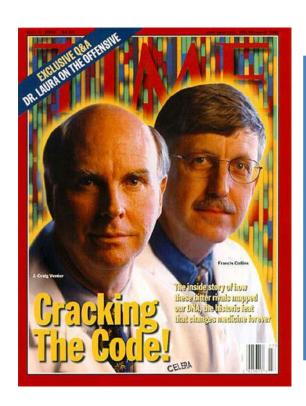


Programming nutrizionale delle malattie dell'anziano

Riccardo Calvani, PhD

Dipartimento di Geriatria, Ortopedia e Neuroscienze
Università Cattolica del Sacro Cuore

Outline



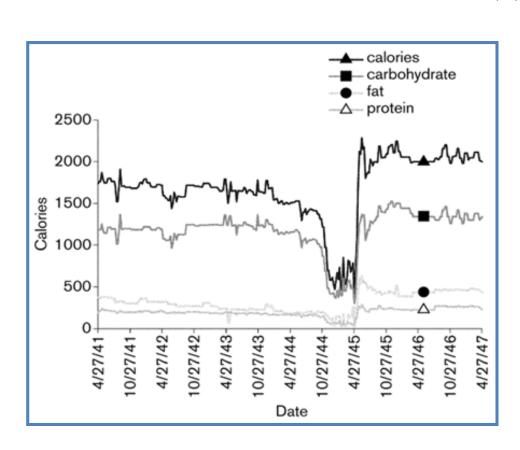
- The Dutch Hunger Winter and the developmental origins of health and disease (DOHaD)
- Mechanisms of nutritional programming of adult diseases

- The "First 1000 days" paradigm
- From Waddington "epigenetic landscape" to "Pachinko model"

"Without understanding the environment in which cells or species exist, life cannot be understood. An organism's environment is ultimately as unique as its genetic code."

Craig Venter

Venter, J. C. A Life Decoded. 3 (Penguin, Allen Lane, London, 2007).



The Dutch Hunger Winter and the developmental origins of health and disease

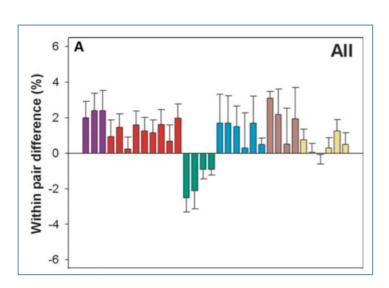
Laura C. Schulz¹
Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211

PNAS
Celebrating
O Years
1915-2015

PNAS | September 28, 2010 | vol. 107 | no. 39 | 16757–16758

The Dutch famine and its long-term consequences for adult health

Tessa Roseboom*, Susanne de Rooij, Rebecca Painter

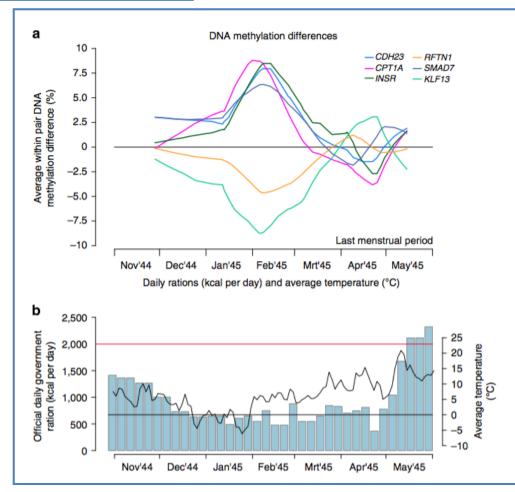

• Glucose intolerance • Cardiovascular disease • Hypertension • Dyslipidemia • Obesity • Affective disorders • Second trimester • Glucose intolerance • Pulmonary disease • Renal disease

DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific

Elmar W. Tobi¹, L.H. Lumey^{3,5}, Rudolf P. Talens¹, Dennis Kremer¹, Hein Putter², Aryeh D. Stein⁴, P. Eline Slagboom¹ and Bastiaan T. Heilmans^{1,*}

Human Molecular Genetics

Human Molecular Genetics, 2009, Vol. 18, No. 21 doi:10.1093/hmg/ddp353



DNA methylation signatures link prenatal famine exposure to growth and metabolism

Elmar W. Tobi¹, Jelle J. Goeman^{2,†}, Ramin Monajemi², Hongcang Gu³, Hein Putter², Yanju Zhang¹, Roderick C. Slieker¹, Arthur P. Stok¹, Peter E. Thijssen^{1,4}, Fabian Müller⁵, Erik W. van Zwet², Christoph Bock^{5,6,7}, Alexander Meissner^{3,8}, L.H. Lumey^{1,9}, P. Eline Slagboom¹ & Bastiaan T. Heijmans¹

JNCI Journal of the National Cancer Institute

Breast Cancer Risk After Caloric Restriction During the 1944–1945 Dutch Famine

Sjoerd G. Elias, Petra H. M. Peeters, Diederick E. Grobbee, Paulus A. H. van Noord

Journal of the National Cancer Institute, Vol. 96, No. 7, April 7, 2004

Risk Factor	Relative Risk	95% Confidence Interval (CI)*
Conjugated equine estrogen	0.77	0.59-1.01
Birth weight	1.09 [†]	2.00-17.00
Fish intake	1.14	1.03-1.26
Premarin/Progestin	1.24	1.01-1.54
Premarin/Progestin	1.26	1.00-1.59
French fries (1 additional serving per week)	1.27	1.12-1.44
Grapefruit	1.3	1.06-1.58
Night shift work	1.51	1.36-1.68
Flight attendant (Finnish)	1.87	1.15-2.23
Dutch famine [‡]	2.01	0.92-4.41
Antibiotic use§	2.07	1.48-2.89
Flight attendant (Icelandic)	4.1	1.70-8.50
Electric blanket use [¶]	4.9	1.50-15.6
Tobacco smoking and lung cancer	26.07	6.58-103.3
		7,000,17,00,1

Cancer J 2009;15: 93-104

Prenatal undernutrition and cognitive function in late adulthood

Susanne R. de Rooij^{a,1}, Hans Wouters^a, Julie E. Yonker^b, Rebecca C. Painter^c, and Tessa J. Roseboom^a

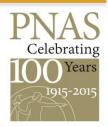
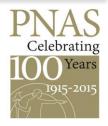


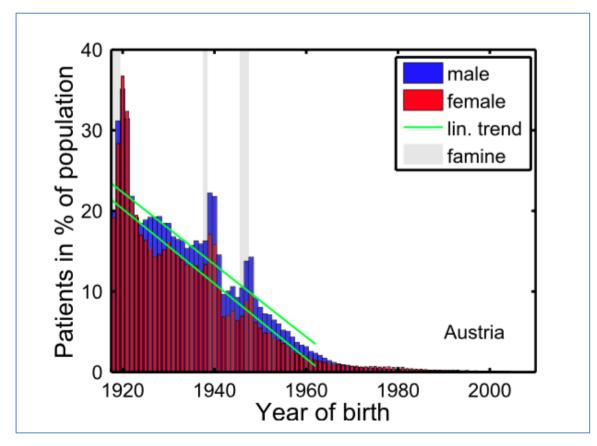
Table 3. Mean actual cognition test scores according to timing of prenatal exposure to the Dutch famine

Exposure to famine

	N	Born before	In late gestation	In mid gestation	In early gestation	Conceived after	Total
N		231	126	107	64	209	737
AH4 test							
Response time (s)*	727	22.6	21.4	22.5	23.4	23.2	22.6 (10.2)
Score (%)*	727	70.9	72.4	71.8	76.0	73.3	72.4 (19.0)
Memory task							
Immediate recall (items)	613	22.1	20.7	22.2	20.0	21.3	21.4 (6.9)
Retrieval (%)	583	81.8	78.5	83.2	79.7	79.6	80.7 (19.9)
Mirror task							
Rounds*	717	3	3	3	3	3	3 (2)
Errors*	717	55	49	37	55	41	49 (79)
Errors per round*	643	13	12	10	14	10	12 (30)
Stroop task							
Response time (s)	678	3.5	3.5	3.5	3.6	3.4	3.5 (0.6)
Score (%)*	714	42.3	36.5	40.0	27.5 [†]	43.9	38.5 (55.7)
Possibly inattentive (%)	699	11.3	11.3	15.5	24.6	13.9	13.7

Data are given as means (SD) or *medians (IQR). Shaded areas indicate the groups exposed to famine during gestation compared with the control groups unexposed to famine during gestation.


[†]Statistically significant difference compared with participants unexposed to famine during gestation (based on linear regression analysis, P < 0.05, adjusted for sex).



Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century

Stefan Thurner^{a,b,c,1}, Peter Klimek^a, Michael Szell^{a,d}, Georg Duftschmid^e, Gottfried Endel^f, Alexandra Kautzky-Willer^g, and David C. Kasper^h

THELANCET, MAY 10, 1986

Epidemiology

INFANT MORTALITY, CHILDHOOD NUTRITION, AND ISCHAEMIC HEART DISEASE IN ENGLAND AND WALES

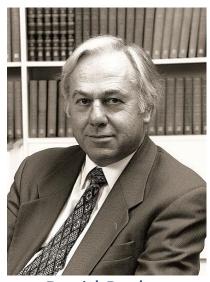
D. J. P. BARKER

C. OSMOND

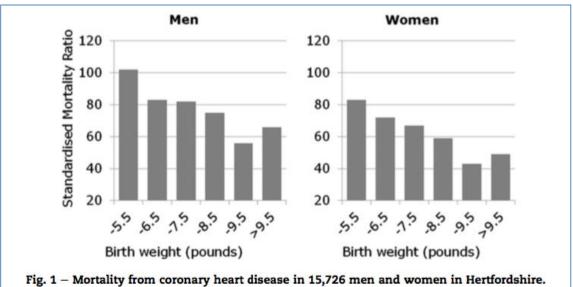
MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO9 4XY

The Lancet · Saturday 9 September 1989

WEIGHT IN INFANCY AND DEATH FROM ISCHAEMIC HEART DISEASE


D. J. P. BARKER

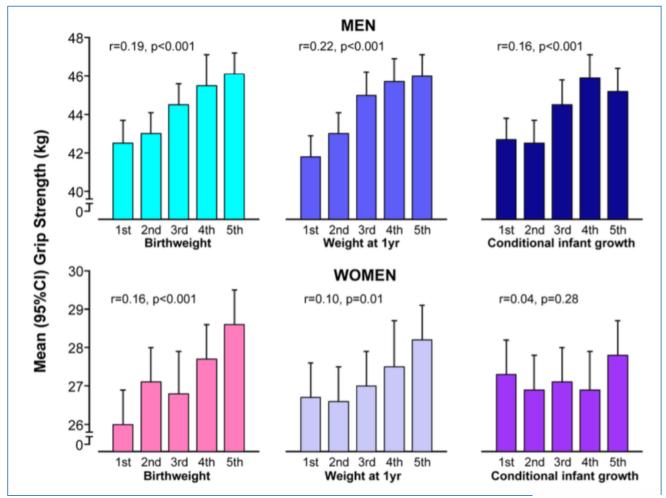
P. D. WINTER


B. MARGETTS C. OSMOND

S. J. SIMMONDS

MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO9 4XY

David Barker



The developmental origins of sarcopenia

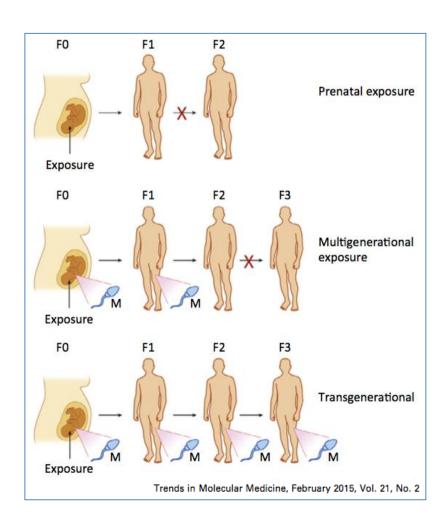
Avan Aihie Sayer, Holly Syddall, Helen Martin, Harnish Patel, Daniel Baylis, and Cyrus Cooper MRC Epidemiology Resource Centre, University of Southampton, Southampton, UK

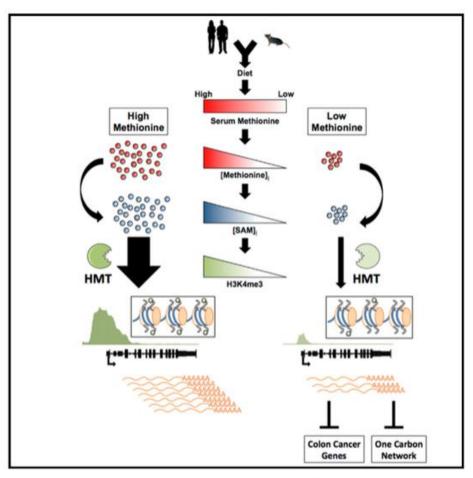
EARLY DEVELOPMENTAL CONDITIONING OF LATER HEALTH AND DISEASE: PHYSIOLOGY OR PATHOPHYSIOLOGY?

M. A. Hanson and P. D. Gluckman

A secure developmental environment

- · Investment for longevity
 - Commitment to repair
 - Commitment to tissue reserve:
 - neuronal number
 - nephron number
 - · cardiomyocyte number
 - · other stem cells
- · Investment for large adult size
 - Bone mass
 - Muscle mass


A threatening developmental environment


- · Immediate trade-offs to survive
 - Smaller birth size
 - Prematurity
 - Sarcopenia
 - More fat
 - Fewer nephrons, cardiomyocytes, neurons
- · Reproductive strategy
 - early puberty
- Investment to resist environmental challenges
 - Altered HPA and stress response
 - Altered behavior
 - Appetite & food preference

Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome

Yun Ji^a, Zhenlong Wu^{a,*}, Zhaolai Dai^a, Kaiji Sun^a, Junjun Wang^a, Guoyao Wu^{a,b}

Journal of Nutritional Biochemistry xx (2015) xxx-xxx

Mentch et al., 2015, Cell Metabolism 22, 1–13 November 3, 2015 ©2015 Elsevier Inc.

40 wGA 4 w postterm

Nutrition and the developing brain: nutrient priorities and measurement¹⁻³

Michael K Georgieff

TABLE 1

Choline

Am J Clin Nutr 2007;85(suppl):614S-20S.

Global

Hippocampus

White matter

Nutrient	Brain requirement for the nutrient	Predominant brain circuitry or process affected by deficiency
Protein-energy	Cell proliferation, cell differentiation	Global
	Synaptogenesis	Cortex
	Growth factor synthesis	Hippocampus
Iron	Myelin	White matter
	Monoamine synthesis	Striatal-frontal
	Neuronal and glial energy metabolism	Hippocampal-frontal
Zinc	DNA synthesis	Autonomic nervous system
	Neurotransmitter release	Hippocampus, cerebellum
Copper	Neurotransmitter synthesis, neuronal and glial energy metabolism, antioxidant activity	Cerebellum
LC-PUFAs	Synaptogenesis	Eye
	Myelin	Cortex

Neurotransmitter synthesis

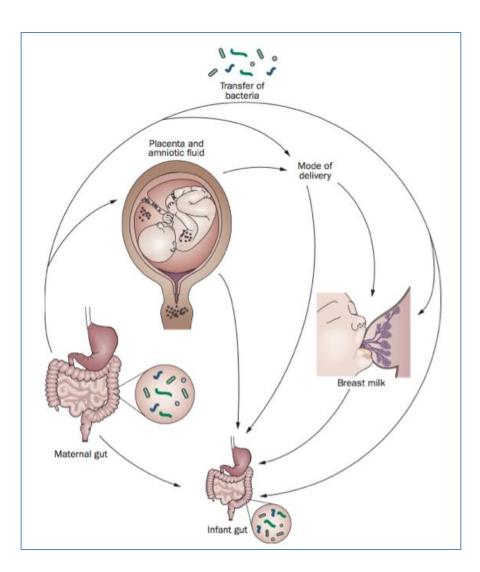
¹ LC-PUFAs, long-chain polyunsaturated fatty acids.

DNA methylation

Myelin synthesis

Folding of the cortex

Grey matter Maturation
3 weeks post term 7 weeks post term 14 weeks post term B White matter Maturation Full-term birth 4 weeks post term 12 weeks post term Fiber direction Longitudinal Transverse FA-RGB FA diffusivity Long-range Association tracts 6 weeks post term

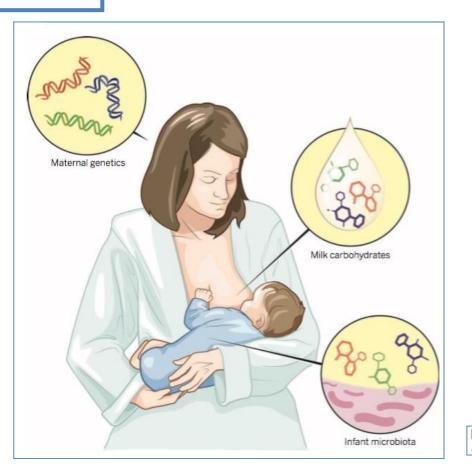


Microbial contact during pregnancy, intestinal colonization and human disease

Samuli Rautava, Raakel Luoto, Seppo Salminen and Erika Isolauri

Delivery Mode of delivery: Extrauterine enviroment Maternal factors Breastfeeding: Microbiological factors Exclusive breastfeeding Maternal nutrition Vaginal Metabolic state Environmental and Assisted vaginal Formula feedingMicrobes Immune state indigenous microbes Caesarian section Immune and Genotype metabolic phenotype Early programming

Rautava, S. et al. Nat. Rev. Gastroenterol. Hepatol. advance online publication 14 August 2012



MICROBIOTA

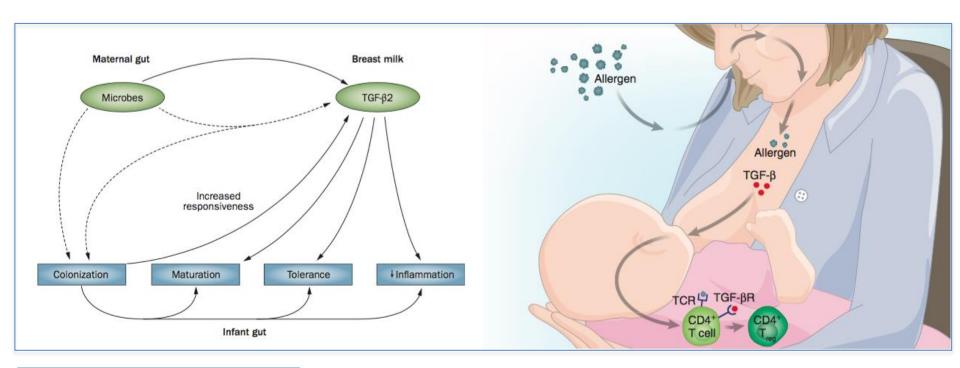
Mother's littlest helpers

Breastmilk nourishes the microbes colonizing the neonatal intestinal tract

Science MAAAS

"...our microbiota are ecologically engineered by mothers and breastmilk."

Katie Hinde and Zachery T. Lewis Science 348, 1427 (2015);

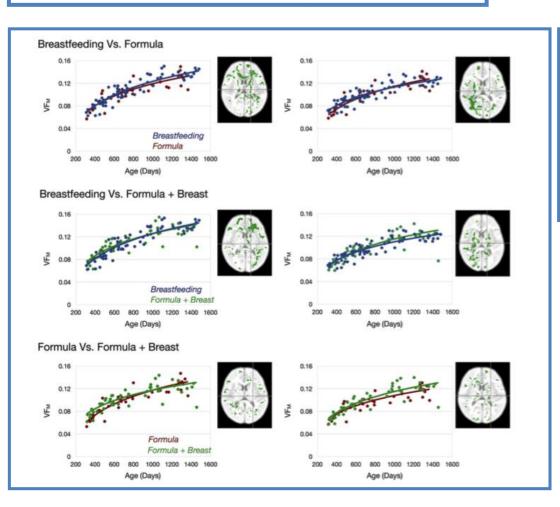


Microbial contact during pregnancy, intestinal colonization and human disease

Samuli Rautava, Raakel Luoto, Seppo Salminen and Erika Isolauri

Breathing easier with breast milk

Lynn Puddington & Adam Matson



Breastfeeding and early white matter development: A cross-sectional study

Sean C.L. Deoni ^{a,*}, Douglas C. Dean III ^a, Irene Piryatinsky ^{a,b}, Jonathan O'Muircheartaigh ^{a,c}, Nicole Waskiewicz ^a, Katie Lehman ^a, Michelle Han ^a, Holly Dirks ^a

Comparison of behavioral test scores for breast-fed children divided into short and long feeding durations. Bold values indicate statistically different scores corrected for type 1 error using Holm–Bonferroni correction.

	Short breast feeding duration	Long breast feeding duration	p-Value
Participants (n)	22	25	
Age (days)	691 ± 324	807 ± 341	0.24
Breast feeding duration	220 ± 81	600 ± 124	
Gross motor	20.41 ± 4.7	23 ± 5	0.046
Fine motor	20.4 ± 5.5	25.3 ± 8.6	0.028
Receptive language	19.2 ± 8.9	26.7 ± 11.2	0.015
Expressive language	16.9 ± 7.9	25.6 ± 10.7	0.0036
Visual reception	20.9 ± 9.2	30 ± 11.1	0.0042

Fetal and Early Childhood Undernutrition, Mortality, and Lifelong Health

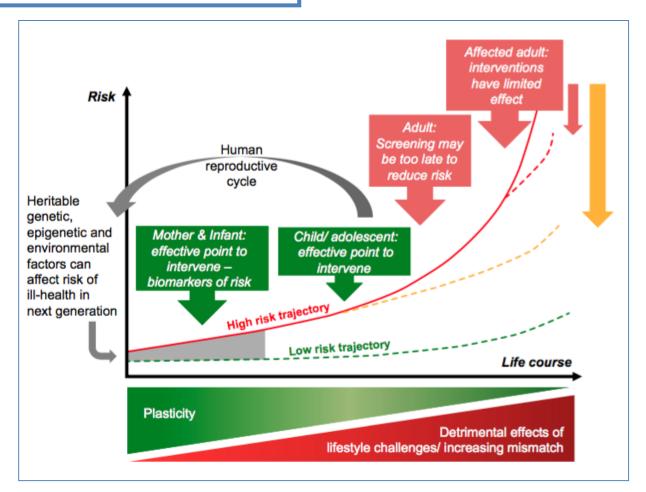
Chessa K. Lutter¹* and Randall Lutter²

Science 337, 1495 (2012)

Outcomes	Measure of breast-feeding	Effect size	Notes
Ovarian cancer	Length of breast-feeding	Reduced risk of ovarian cancer by 28% for each year of breast-feeding (odds ratio: 0.72; 95% CI: 0.54 to 0.97)	Meta-analysis of nine studies with 4387 cancer ovarian cancer cases and 10,574 controls (32)
Breast cancer	Length of breast-feeding	Reduced risk of breast cancer by 4.3% for each year of breast-feeding in first analysis; reduced risk of breast cancer by 28% for each year or more of breast-feeding in second analysis	First meta-analysis included 45 studies conducted through 2001; second meta-analysis included 23 studied published between 1980 and 1998 (32)
Type 2 diabetes	Length of breast-feeding	Reduced diabetes risk by 4%; 95% CI: 1 to 9% per year of breast-feeding in first cohort and 12%; CI: 6 to 18% in second cohort	Two cohorts from a high-quality longitudinal study of 150,000 parous women in the U.S. (32)
Hypertension	Never breast-fed versus exclusively breast-fed first child for ≥6 months	Increased risk of hypertension by 29% (hazard ratio: 1.29; 95% CI: 1.20 to 1.40)	55,636 parous women in the U.S., reported 8861 cases during 660,880 person-years of observations (30)

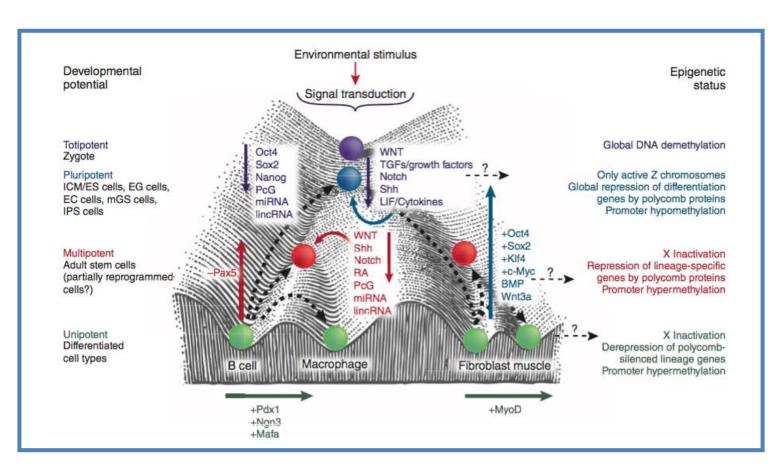
Conclusions

The prenatal period and the first 24 months of life provide a 1000-day window in which sound nutrition, especially adherence to recommended breastfeeding and complementary feeding practices, can improve not only the health of vulnerable infants and young children, but also the trajectory of aspects of their well-being and the health of their mothers.



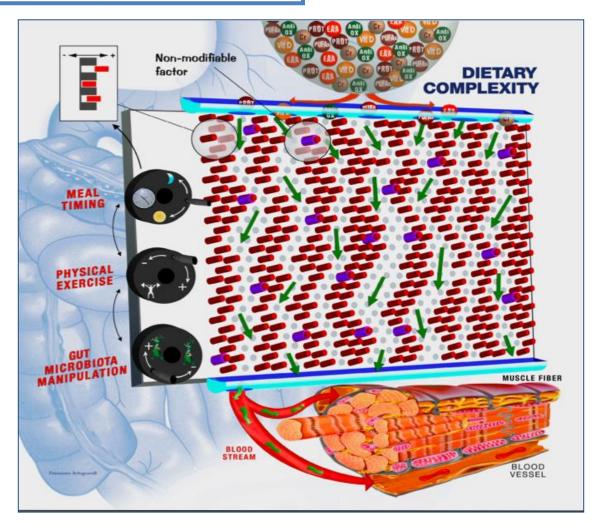
EARLY DEVELOPMENTAL CONDITIONING OF LATER HEALTH AND DISEASE: PHYSIOLOGY OR PATHOPHYSIOLOGY?

M. A. Hanson and P. D. Gluckman



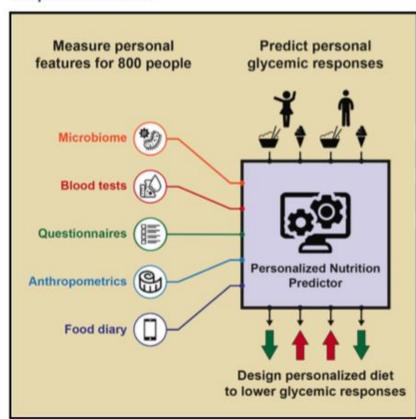
Linking cell signaling and the epigenetic machinery

Helai P Mohammad & Stephen B Baylin



CURRENT NUTRITIONAL RECOMMENDATIONS AND NOVEL DIETARY STRATEGIES TO MANAGE SARCOPENIA

R. CALVANI¹, A. MICCHELI², F. LANDI³, M. BOSSOLA⁴, M. CESARI⁵, C. LEEUWENBURGH⁶, C.C. SIEBER⁷, R. BERNABEI³, E. MARZETTI³



Personalized Nutrition by Prediction of Glycemic Responses

Graphical Abstract

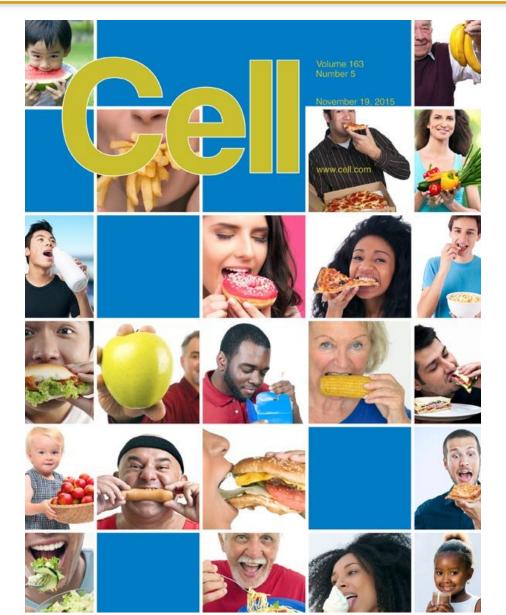
Authors

David Zeevi, Tal Korem, Niv Zmora, ..., Zamir Halpern, Eran Elinav, Eran Segal

Correspondence

eran.elinav@weizmann.ac.il (E.E.), eran.segal@weizmann.ac.il (E.S.)

In Brief

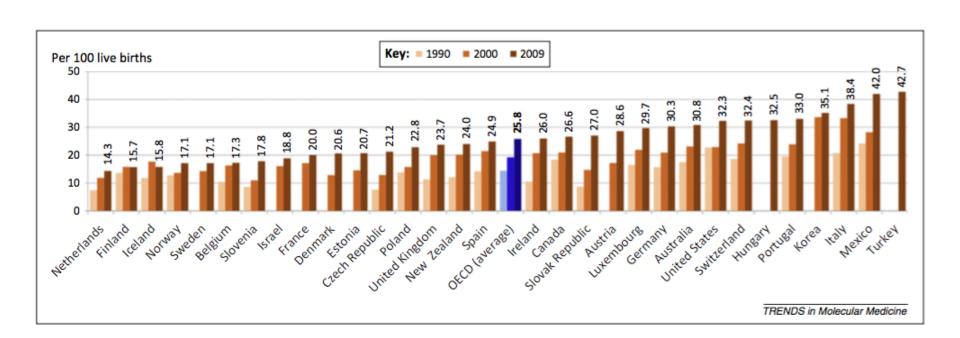

People eating identical meals present high variability in post-meal blood glucose response. Personalized diets created with the help of an accurate predictor of blood glucose response that integrates parameters such as dietary habits, physical activity, and gut microbiota may successfully lower post-meal blood glucose and its long-term metabolic consequences.

Cell 163, 1079-1094, November 19, 2015

Take Home Message

"I have had to eat my own words many times, and I have found it a very nourishing diet."

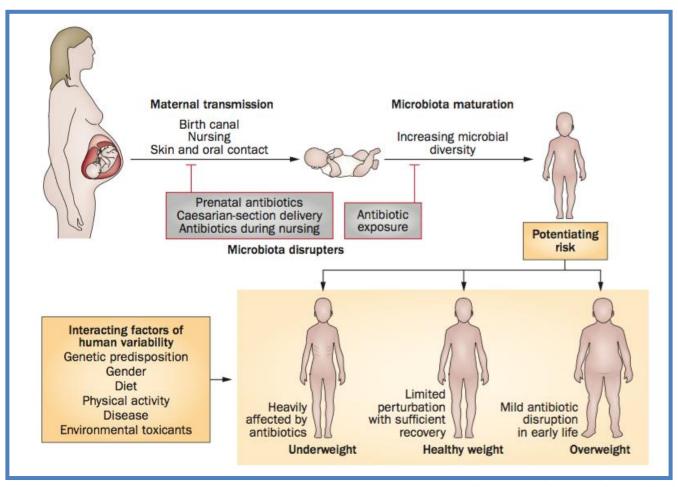
Sir Winston Churchill



Special Issue: Nurturing the Next Generation

The infant microbiome development: mom matters

Noel T. Mueller^{1,2}, Elizabeth Bakacs³, Joan Combellick⁴, Zoya Grigoryan³, and Maria G. Dominguez-Bello³



OPINION

Antibiotics in early life and obesity

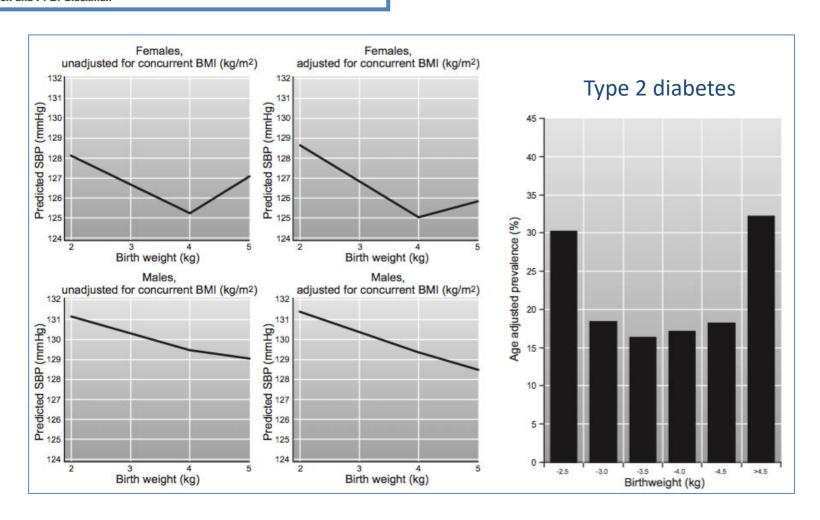
Laura M. Cox and Martin J. Blaser

Special Issue: Nurturing the Next Generation

The infant microbiome development: mom matters

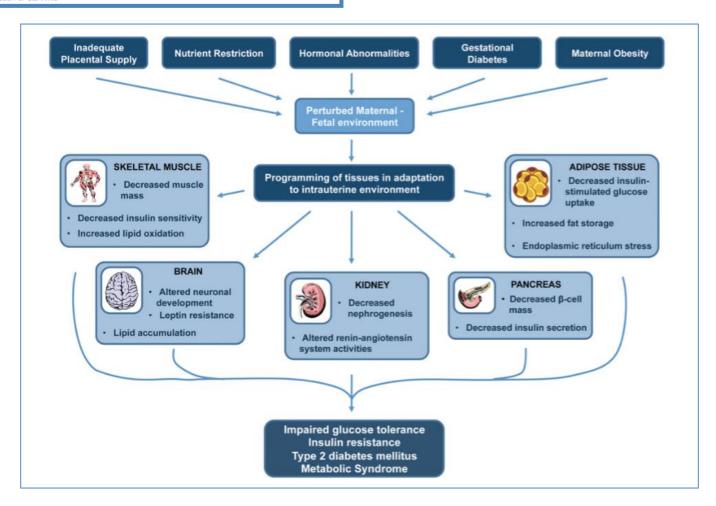
Noel T. Mueller^{1,2}, Elizabeth Bakacs³, Joan Combellick⁴, Zoya Grigoryan³, and Maria G. Dominguez-Bello³

Perturbation to microbiome assembly	Prevention strategies	Restoration approaches
C-section delivery	Support efforts to increase use of midwives Champion evidence-based labor management Optimize managing labor (reduce pain, increase maternal comfort) Educate women about the potential consequences of C-section delivery Change policies around physician incentives and malpractice insurance	Inoculation of neonate with maternal vaginal flora immediately following C-section delivery Breastfeeding Pre- and probiotic supplementation of neonate
Gestational, perinatal, or postnatal antibiotics	Implement robust antimicrobial stewardship programs (http://www.whitehouse.gov/the-press-office/2014/09/18/executive-order-combating-antibiotic-resistant-bacteria) Develop safe strategies that limit use of antibiotics in women in labor (e.g., rapid PCR testing for group B Streptococcus at the time of admission to the delivery unit) During C-section delivery, give antibiotics after cord clamping to eliminate fetal exposure to antibiotics Use more prudency in antibiotic administration during pregnancy	Breastfeeding Pre- and probiotic supplementation of mother during pregnancy and neonate after birth
Formula feeding	Adopt WHO/UNICEF Baby Friendly Hospital Initiative Develop other policies that incentivize breastfeeding Do not offer formula to newborns without request or medical indication Promote use of donor breast milk rather than formula when maternal milk is not an option	Reintroduce breastfeeding Pre- and probiotic supplementation



EARLY DEVELOPMENTAL CONDITIONING OF LATER HEALTH AND DISEASE: PHYSIOLOGY OR PATHOPHYSIOLOGY?

M. A. Hanson and P. D. Gluckman



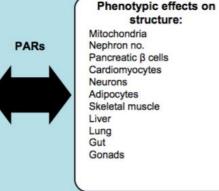
Biochem. J. (2010) 427, 333-347 (Printed in Great Britain) doi:10.1042/BJ20091861

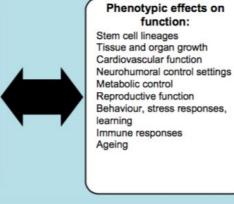
REVIEW ARTICLE

Mechanisms involved in the developmental programming of adulthood disease

Matthew J. WARNER and Susan E. OZANNE1

EARLY DEVELOPMENTAL CONDITIONING OF LATER HEALTH AND DISEASE: PHYSIOLOGY OR PATHOPHYSIOLOGY?


M. A. Hanson and P. D. Gluckman


PHYSIOLOGICAL ADAPTIVE PROCESSES IN DEVELOPMENTAL CONDITIONING

EPIGENETIC PROCESSES -

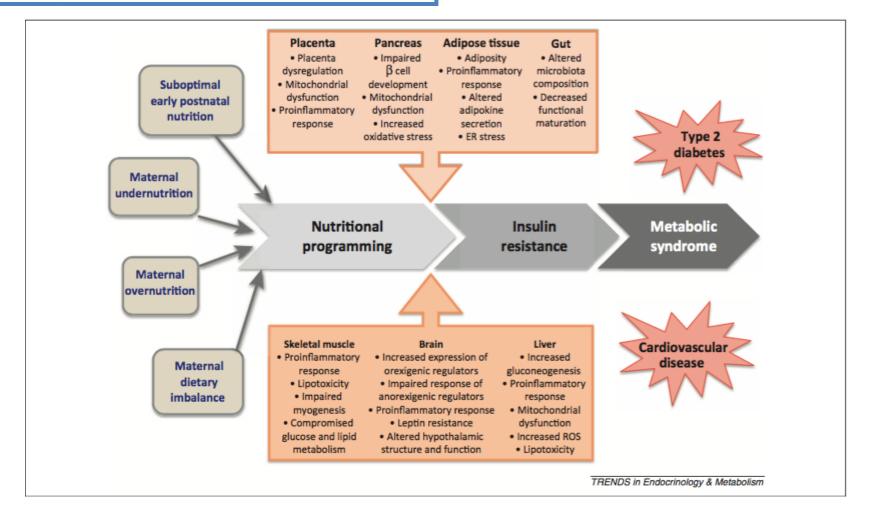
Challenges in normal range: Maternal undernutrition Mild hypoxia Small stature Primipara Extremes of age Multiple pregnancy Stress Match or mismatch? Survival to reproduce, health, longevity, transgenerational effects

Cues/ Effectors: Placental function Oxidative and nitrative stress ER stress SNS Glucocorticoids RAS ANP ET-1 Prostaglandins IGFs M1 to M2 macrophages Inflammation Cytokines

Don't blame the mothers

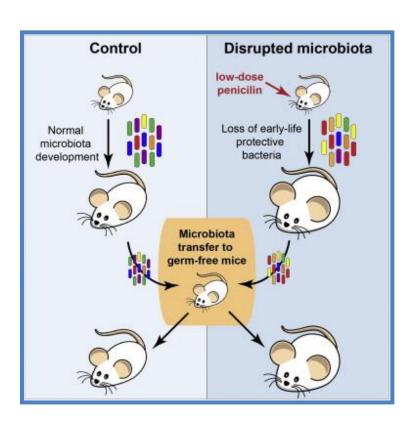
Careless discussion of epigenetic research on how early life affects health across generations could harm women, warn **Sarah S. Richardson** and colleagues.

14 AUGUST 2014 | VOL 512 | NATURE | 131

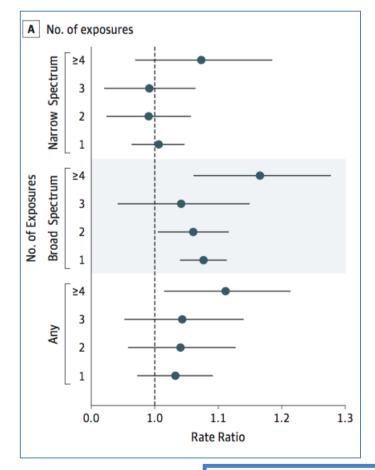


Nutritional programming of insulin resistance: causes and consequences

Daniella E. Duque-Guimarães and Susan E. Ozanne



Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences

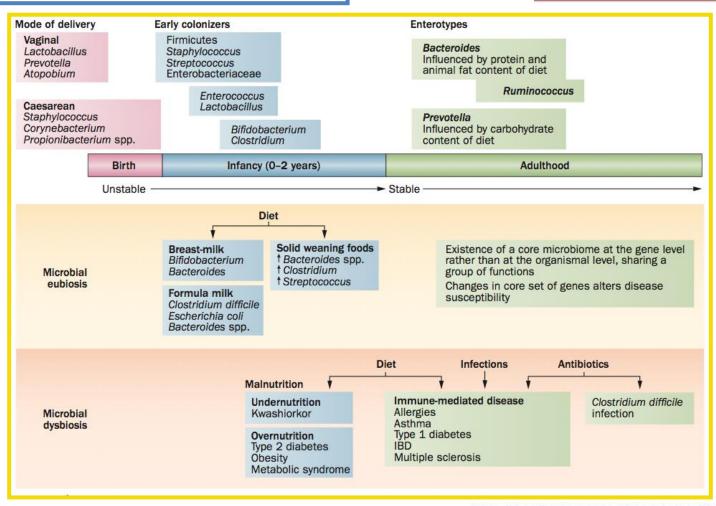

Laura M. Cox,^{1,2} Shingo Yamanishi,² Jiho Sohn,² Alexander V. Alekseyenko,^{2,3} Jacqueline M. Leung,¹ Ilseung Cho,² Sungheon G. Kim, ¹ Huilin Li,² Zhan Gao,² Douglas Mahana, ¹ Jorge G. Zárate Rodriguez,² Arlin B. Rogers,⁵ Nicolas Robine, ⁵ Png Loke,⁴ and Martin J. Blaser^{4,2,5}, ⁴

Original Investigation

Association of Antibiotics in Infancy With Early Childhood Obesity

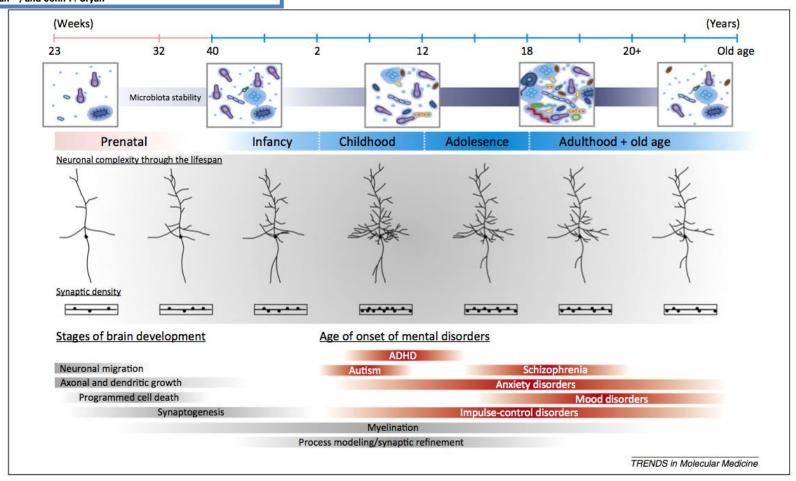
L. Charles Bailey, MD, PhD; Christopher B. Forrest, MD, PhD; Peixin Zhang, PhD; Thomas M. Richards, MS; Alice Livshits, BS; Patricia A. DeRusso, MD, MS

Cell 158, 705-721, August 14, 2014



Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis

Nitya Jain and W. Allan Walker



Microbiota and neurodevelopmental windows: implications for brain disorders

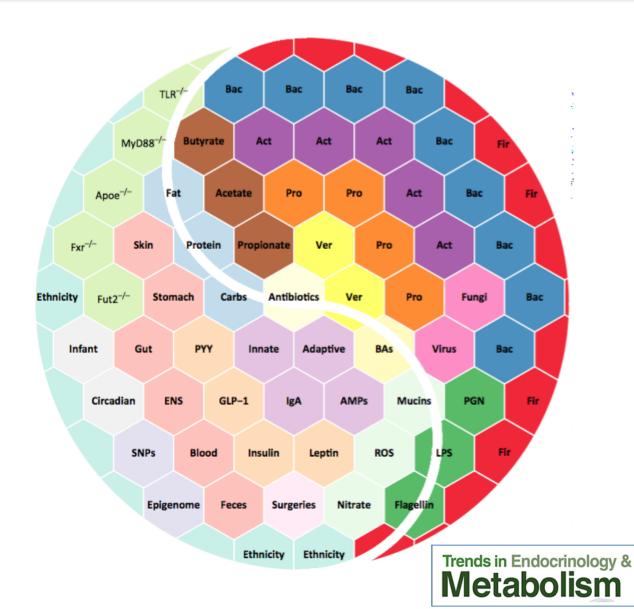
Yuliya E. Borre¹, Gerard W. O'Keeffe^{2,3}, Gerard Clarke^{1,4}, Catherine Stanton^{4,5}, Timothy G. Dinan^{1,4}, and John F. Cryan^{1,2}

Special Issue: Systems Approach to Metabolic Disease

Review

Linking Microbiota to Human Diseases: A Systems Biology Perspective

Hao Wu, 1,‡ Valentina Tremaroli, 1,‡ and Fredrik Bäckhed 1,2,*

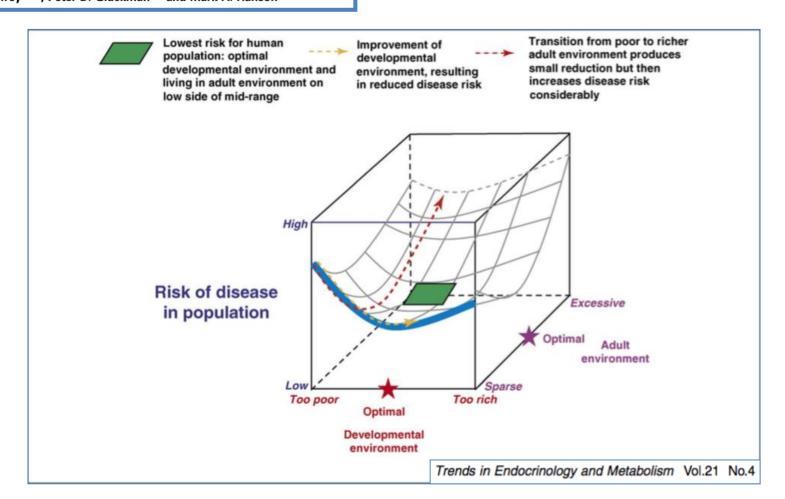

Outstanding Questions

What is a healthy microbiome? What are the roles of trans-kingdom interactions between bacteria, viruses, and fungi for immune and metabolic homeostasis? Longitudinal studies are required to characterize the dynamic changes of the normal gut microbiota.

How can we correct an aberrant gut microbiota to promote health and prevent disease?

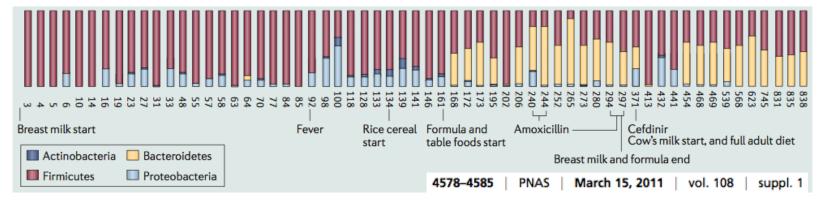
What are the mechanistic links between an altered gut microbiota and a specific human disease? Systems biology (omics) approaches need to be integrated to expand current knowledge.

What is the composition of the microbiome in defined microniches within the human intestine? Do site-specific communities play a role in humanmicrobe interactions in health and disease?



Developmental origins of metabolic disease: life course and intergenerational perspectives

Keith M. Godfrey^{1,2,3}, Peter D. Gluckman^{4,5} and Mark A. Hanson^{1,2}

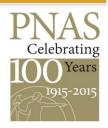


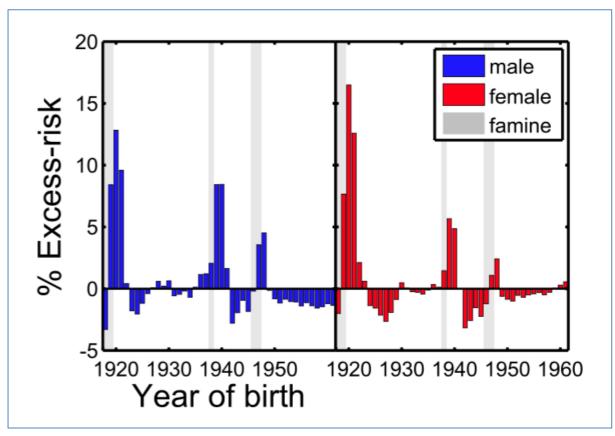
Succession of microbial consortia in the developing infant gut microbiome

Jeremy E. Koenig^a, Aymé Spor^a, Nicholas Scalfone^a, Ashwana D. Fricker^a, Jesse Stombaugh^b, Rob Knight^{b,c}, Largus T. Angenent^d, and Ruth E. Ley^{a,1}

Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota

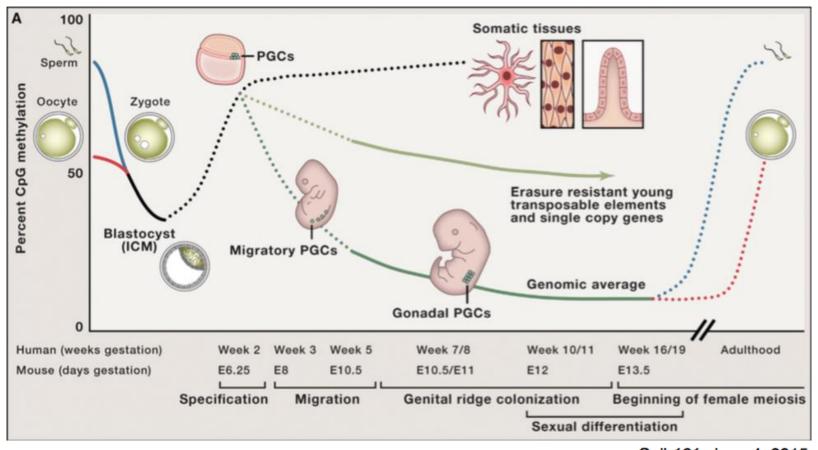
Purna C. Kashyap^{a,b}, Angela Marcobal^a, Luke K. Ursell^c, Samuel A. Smits^a, Erica D. Sonnenburg^a, Elizabeth K. Costello^a, Steven K. Higginbottom^a, Steven E. Domino^d, Susan P. Holmes^e, David A. Relman^{a,f,g}, Rob Knight^c, Jeffrey I. Gordon^h, and Justin L. Sonnenburg^{a,1}


www.pnas.org/cgi/doi/10.1073/pnas.1306070110



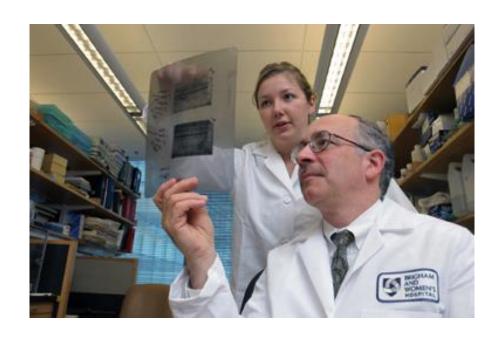
Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century

Stefan Thurner^{a,b,c,1}, Peter Klimek^a, Michael Szell^{a,d}, Georg Duftschmid^e, Gottfried Endel^f, Alexandra Kautzky-Willer^g, and David C. Kasperⁿ



Forget the Parents: Epigenetic Reprogramming in Human Germ Cells

Ferdinand von Meyenn^{1,*} and Wolf Reik^{1,2,3,*}



Gut Microbiota, the Genome, and Diet in Atherogenesis

Joseph Loscalzo, M.D., Ph.D.

"... Genes and environmental factors interact in myriad ways to modulate and modify the biology of all living organisms, challenging the notion that these two principal determinants of phenotype can ever truly act independently of each other..."

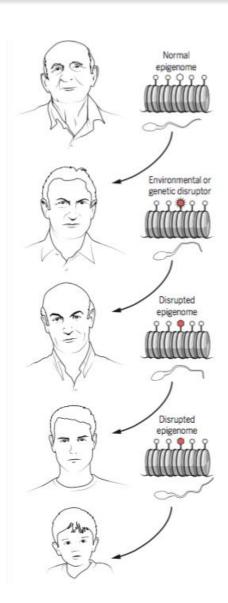
The Journal of Nutrition, Health & Aging© Volume 16, Number 7, 2012

BIRTH WEIGHT AND MUSCLE STRENGTH: A SYSTEMATIC REVIEW AND META-ANALYSIS

R. DODDS^{1,2,3}, H.J. DENISON³, G. NTANI³, R. COOPER⁴, C. COOPER³, A.A. SAYER^{2,3}, J. BAIRD³

Stratification	No. of data points*	Increase in grip strength (kg) per 1 kg increase in hirth weight (95% CI)	I² (%)	P value**
None	14	0.86 (0.58 to 1.15)	56.2	0.005
Gender				
Female	12	0.81 (0.59 to 1.02)	3.0	0.415
Male	12	0.96 (0.49 to 1.44)	58.8	0.005
Mean age (years)		•		
< 21	4	0.48 (0.05 to 0.92)	57.1	0.072
21 - 40	6	1.16 (0.85 to 1.46)	0.0	0.436
> 40	4	1.09 (0.67 to 1.51)	36.7	0.192
Study setting				
Developing	3	0.41 (0.05 to 0.77)	0.0	0.788
Developed	11	0.96 (0.66 to 1.26)	54.4	0.016
Risk of bias				
Low	8	0.86 (0.49 to 1.24)	72.6	< 0.001
Medium	6	0.92 (0.52 to 1.31)	0.0	0.553

^{*}Note there are 14 data points in gender-adjusted models as for one study (Ortega et al) we only had separate results for males and females. ** From Q-statistic



EPIGENETICS

The epigenome-a family affair

Epigenome disruptions can be transmitted as altered histone modification patterns in sperm

