

La terapia antibiotica nell'anziano

Invecchiamento e Farmacocinetica

Pier Giorgio Cojutti

Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum Università di Bologna

Unità di Farmacologia Clinica, Policlinco di S.Orsola, IRCCS Az. Ospedaliero-Universitaria di Bologna

30 Novembre 2022

AGE-DEPENDENT CHANGES IN BODY COMPOSITION

DISTRIBUTION

PHYSIOLOGIC CHANGES

PK EFFECT

•↑ ratio of adipose tissue to lean tissue

- • \uparrow t_{1/2} of lipophilic drugs
- ↑ conc. of hydrophilic drugs

METABOLISM

• phase 1 enzyme (CYP-450) activity

 $\bullet \uparrow t_{1/2}$ of drugs metabolized by

CYP 450 enzymes

• | phase 1 enzyme (CYP-450) activity

• \uparrow t_{1/2} of drugs metabolized by CYP

450 enzymes

•≈ phase 2 enzyme (synthetic) activity

AGE-RELATED INCREASE IN THE SYSTEMIC EXPOSURE TO DRUGS (AGE PK RATIO)

Ducker CM et al. Clin Pharmacol Ther

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Population pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely Hospitalized Older Patients

with Various Degrees of Renal Function

Cojutti P, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F. Antimicrob Agents Chemother 2017;61(3):e02134-16

Characteristic	Value
Patient demographic	
Age (yr [mean \pm SD])	81.2 ± 7.8
Gender (male/female) [n (%)]	103/65 (61.3/38.7)
Body wt (kg) [median (IQR)]	70 (65–80)
CrCL _{CKD-EPI} (ml/min/1.73 m ²) ^a [median (IQR)]	30.2 (18.2–50.2)
Indication for levofloxacin use [n (%)]	
Community-acquired pneumonia	77 (45.8)
Urinary tract infections	22 (13.1)
Chronic obstructive pulmonary disease	19 (11.3)
Fever of unknown origin	12 (7.1)
Sepsis of unknown origin	13 (7.7)
Intra-abdominal infections	11 (6.6)
Skin and soft tissue infections	8 (4.8)
Bone and joint infections	6 (3.6)
Patients with identified microbiological isolates [n (%)]	49 (29.2)
Levofloxacin treatment	
Duration of therapy (days) [median (IQR)]	10 (7–14)
Route of administration (oral/i.v.) [n (%)]	145/23 (86.3/13.7)
Clinical outcome [n (%)]	
Cured	95 (56.5)
Improved	28 (16.7)
Failed	26 (15.5)
Dead/modified antibiotic therapy	19 (11.3)

^aAt first TDM.

Population pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely Hospitalized Older Patients with Various Degrees of Renal Function Cojutti P, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F. *Antimicrob Agents Chemother* 2017;61(3):e02134-16

Population Pharmacokinetic Parameter Estimates:

Unit	<i>k_a</i> (h ⁻¹)	$k_{\rm cp} ({\rm h}^{-1})$	$k_{\rm pc} ({\rm h}^{-1})$	CL (liters/h)	V_c^a (liters)	F _{os} (%)	T _{lag} (h)
Mean	16.15	0.63	1.77	2.53	52.95	0.83	1.47
SD	13.47	0.85	0.52	1.46	21.57	0.21	0.65
Coefficient of variation	83.41	133.52	29.47	57.84	40.73	24.83	43.95
Median	9.91	0.04	2.00	2.20	61.25	0.98	1.87

TER STOOLORU

 $^{a}V_{c'}$ volume of the central compartment.

Population pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely

Hospitalized Older Patients with Various Degrees of Renal Function

Cojutti P, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F.

Antimicrob Agents Chemother 2017;61(3):e02134-16

TABLE 3 Probabilities of achieving underexposure, normal target exposure, and overexposure with different levofloxacin dosing regimens in older patients in relation to different classes of renal function

	Proba	ability ^a													
Levoflovacin	0–19		20-39	20–39		40–59		60–79		>80					
regimen (mg)	<50	50–160	>160	<50	50–160	>160	<50	50–160	>160	<50	50-160	>160	<50	50–160	>160
125 every 48 h	91.8	8.2	0.0	99.8	0.2	0.0	99.8	0.2	0.0	99.9	0.1	0.0	100.0	0.0	0.0
250 every 48 h	48.5	50.5	1.0	91.4	8.6	0.0	99.0	1.0	0.0	99.6	0.4	0.0	99.9	0.1	0.0
500 every 48 h	6.4	77.2	16.4	32.2	67.0	0.8	81.6	18.4	0.0	95.7	4.3	0.0	97.2	2.8	0.0
750 every 48 h	1.4	53.9	44.7	7.2	86.2	6.6	42.2	57.2	0.6	79.6	20.0	0.4	89.0	11.0	0.0
500 every 24 h	2.3	50.3	47.4	5	81.3	13.7	22.2	76.0	1.8	59.2	40.1	0.7	78.7	21.0	0.3
750 every 24 h	1.1	17.1	81.8	1.7	51.3	47.0	5.8	82.8	11.4	23.2	73.1	3.7	50.3	47.6	2.1
500 every 12 h	0	3.6	96.4	0.2	12.3	87.5	0.1	39.0	60.9	1.5	70.1	28.4	2.8	82.8	14,4

Population pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely Hospitalized Older Patients with Various Degrees of Renal Function

Cojutti P, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F.

Antimicrob Agents Chemother 2017;61(3):e02134-16

МІС	Dosing regimen (mg) for class of renal function (ml/min/1.73 m ²):								
(mg/liter)	0–19	20–39	40–59	60–79	>80				
0.125	125 every 48 h	500 every 48 h	500 every 48 h	500 every 48 h	750 every 48 h				
0.25	250 every 48 h	500 every 48 h	500 every 48 h	750 every 48 h	750 every 24 h				
0.5	500 every 48 h	750 every 48 h	500 every 24 h	750 every 24 h	500 every 12 h				

Population pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely

Hospitalized Older Patients with Various Degrees of Renal Function

Cojutti P, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F.

Class of renal function	Levofloxacin	CFR			
$(ml/min/1.73 m^2)$	dose (mg)	S. aureus	H. influenzae	E. coli	P. aeruginosa
0–19	125 every 48 h	59.89	99.66	82.06	16.48
	250 every 48 h	77.03	99.78	85.07	40.36
	500 every 48 h	81.59	99.85	87.34	62.24
20–39	500 everv 48 h	79.22	99.79	85.80	47.07
	750 every 48 h	81.26	99.84	87.12	59.63
	500 every 24 h	81.49	99.85	87.43	63.08
40-59	500 every 48 h	71 28	99.73	83 45	25.81
	750 every 48 h	77.73	99.78	85.26	42.03
	500 every 24 h	79.42	99.81	86.16	50.72
	750 every 24 h	81.13	99.84	87.28	61.63
60-79	500 every 48 h	57.19	99.65	81.57	14.41
	750 every 48 h	70.61	99.73	83.52	26.68
	500 every 24 h	74.86	99.76	84.55	36.08
	750 every 24 h	79.16	99.81	86.20	51.22
>80	750 every 48 h	60.72	99.67	82.12	18.21
	500 every 24 h	67.91	99.71	83.27	25.50
	750 every 24 h	75.51	99.77	84.90	39.43
	500 every 12 h	81.67	99.85	87.52	63.81

Antimicrob Agents Chemother 2017;61(3):e02134-16

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Total number of patients	141		
Age (years)	85 (82-87)	Admitting ward	
Gender (M/F)	62/79 (44/56)	Medicine	80 (56.7)
Weight (kg)	70 (63-83)	Surgery	42 (29.8)
Height (cm)	170 (160-175)	Intensive care unit	19 (13.5)
BMI (kg/m^2)	25.4 (22.5-28.3)	Plasma exposure at first TDM assessment	
Creatinine (mg/dL)	1.18 (0.88-1.75)	Underexposure	4 (2.8)
CL_{CR} (mL/min/1.73 m ²)	54.56 (34.28-72.26)	Optimal exposure	33 (23.4)
Type of infection		Overexposure	104 (73.8)
Hospital-acquired pneumonia	56 (38.6)	Piperacillin/tazobactam treatment	
Intra-abdominal infection	24 (16.6)	Median dose (g daily)	9 (9-18)
Sepsis/septic shock	19 (13.1)	Piperacillin Css (mg/L)	73.9 (52.1-107.0)
Skin and soft tissue infection	13 (8.9)	No. of TDM assessments per patient	1 (1-2)
Urinary tract infection	11 (7.6)	Duration of optimized therapy (days)	4 (3-7)
Bloodstream infection	10 (6.9)		
Other	12 (8.3)		TER

Model type	OFV	AIC	BIC	Linear R ²	regressio Bias	on of observed vs. predicted concentrations Imprecision
Base models						
Linear	2078	2084	2094	0.81	-0.13	0.58
Michaelis-Menten	2138	2146	2159	0.96	0.05	1.00
Parallel linear/Michaelis-Menten	2015	2025	2042	0.94	0.23	1.95
Final model						
Parallel linear/Michaelis–Menten (with CL _{CR} as descriptor of CL _{ns})	1953	1965	1985	0.93	0.34	1.72

Predictive performance of the population pharmacokinetic models for continuous infusion piperacillin/tazobactam.

Percentage probability of causing piperacillin/tazobactam overexposure (defined as Css > 157.2 mg/L) with incremental dosages of continuous infusion (CI) piperacillin/tazobactam in elderly patients with various degrees of renal function.

Piperacillin/tazobactam Classes of CL _{CR} (mL/min/1.73 m ²)								
dosages (g daily by CI)	0–19	20-39	40-59	60-79				
2.25	0.3	0.0	0.0	0.0				
4.5	3.7	0.5	0.5	0.3				
6.75	12.1	2.3	1.2	1.1				
9	25.7	6.0	3.1	2.0				
11.25	42.2	14.5	6.8	5.1				
13.5	57.6	27.3	12.1	8.7				
15.75	71.5	40.8	20.8	13.5				
18	83.7	55.1	29.1	20.5				

Probability of target attainment (PTA) of free plasma steady-state concentration/minimum inhibitory concentration (MIC) ≥ 1 for the piperacillin/tazobactam per- missible dosages in relation to different classes of renal function and susceptibility of the invading pathogen. Horizontal broken line identifies the threshold for optimal PTA ($\geq 90\%$). CL CR, creatinine clearance

CI piperacillin/tazobactam	E. coli		K. pneumon	iae	E. cloacae		P. mirabilis		P. aeruginosa	1
dosages at classes of		fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC	fCss/MIC
	$fCss/MIC \ge 4$	≥1	≥4	≥1	≥4	≥1	≥4	≥1	≥ 4	≥1
CL _{CR} : 0–19 mL/min/1.73	m ²									
2.5	50.82	72.78	36.07	64.39	36.55	60.39	79.31	93.31	19.98	47.56
4.5	81.99	93.41	67.12	84.33	62.51	77.97	95.57	98.42	46.63	72.87
CL _{CR} : 20-39 mL/min/1.73	m ²									
2.5	41.15	74.94	26.08	59.63	28.45	56.48	76.48	92.89	11.56	40.49
4.5	76.29	91.70	58.69	81.36	56.22	74.15	94.27	98.03	35.24	67.23
6.75	89.37	95.68	75.89	87.78	69.16	80.88	97.62	99.18	55.03	78.46
9	92.82	96.94	81.97	90.00	73.75	84.69	98.49	99.46	65.41	82.89
CL _{CR} : 40–59 mL/min/1.73	m ²									
2.5	33.47	72.07	19.41	55.46	22.61	53.33	73.34	92.35	7.68	34.70
4.5	71.08	90.67	50.99	79.38	50.72	72.11	93.58	97.82	26.47	63.09
6.75	87.27	94.97	71.55	86.56	66.19	78,73	97.26	98.99	47.43	75.75
9	91.47	96.39	79.11	88.97	71.52	82.34	98.23	99.30	59.50	80.60
11.25	93.17	97.02	82.57	90.15	74.17	84.90	98.54	99.48	66.33	83.25
CL _{CR} : 60–79 mL/min/1.73	m ²									
2.5	26.89	69.72	14.38	51.34	17.92	50.73	70.69	91.67	5.64	30.15
4.5	66.25	89.46	45.13	77.37	46.26	70.41	92.58	97.65	21.03	59.56
6.75	84,73	94.37	66.72	85.38	63.03	77.29	96.92	98.85	40.50	73.11
9	90.09	95.93	76.27	88.13	69.50	80.75	98.00	99.18	54.29	78.71
11.25	92.30	96.67	80.70	89,50	72.74	83.40	98.37	99.38	62.45	81.79
13.5	93.30	97.08	82.84	90.32	74.46	85.22	98.57	99.49	66.87	83.59

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Supra-therapeutic Linezolid Trough Concentrations in Elderly Patients: A Call for Action? Cattaneo D et al. *Clin Pharmacokinet.* 2021;60:603-9

overall increment of 30% per decade of age.

Supra-therapeutic Linezolid Trough Concentrations in Elderly Patients: A Call for Action? Cattaneo D et al. *Clin Pharmacokinet.* 2021;60:603-9

Key Points

The majority of elderly patients treated with the in-label dose of linezolid (600 mg twice daily) had trough drug concentrations largely exceeding the upper safety threshold concentration.

A potential association between the female sex and the risk of linezolid overexposure was also observed.

Reduced linezolid dosing schemes should be potentially considered in selected "low-risk" elderly patients, ideally guided by therapeutic drug monitoring.

Polytherapy and the risk of potentially inappropriate prescriptions (PIPs) among elderly and very elderly patients in three different settings (hospital, community, long-term care facilities) of the Friuli Venezia Giulia region, Italy: are the very elderly at higher risk of PIPs? Cojutti P, Arnoldo L, Cattani G, Brusaferro S, Pea F. *Pharmacoepidemiol Drug Saf* 2016;25(9):1070-8

	Hospital $(n = 528)$	GPs (<i>n</i> = 527)	LTCFs (<i>n</i> = 527)	р
Demographics				
Sex (male/female), n (%)	267/261 (50.6/49.4)*	225/303 (42.7/57.5)*°	156/372 (29.6/70.6)†°	< 0.001
Age (years), median (IQR)	81 (75-87)*†	76 (71–82)*°	85 (79–89)†°	< 0.001
Elderly, n (%)	209 (39.6)*†	329 (62.4)*°	121 (22.9)†°	< 0.001
Very elderly, n (%)	319 (60.4)*†	198 (37.6)*°	406 (77.1)†°	< 0.001
Number of per patient underlying diseases, median (IQR)	3 (2-4)*	4 (2-5)*°	3 (2–4)°	< 0.001
Drug prescription pattern				
Number of patients with polypharmacy, n (%)	389 (73.7)*	304 (57.7)*°	370 (70.2)°	< 0.001
Number of patients with hyperpolypharmacy, n (%)	80 (15.2)*	51 (9.7)*°	82 (15.6)°	0.008
Number of drugs per patient, median (IQR)	6 (4-8)*	5 (3-7)*°	6 (4–8)°	< 0.001
PIP pattern				
Total number of PIPs, n (% of total prescriptions)	307 (9.1)†	292 (10.2)°	553 (16.6)†°	< 0.001
Number of patients with:				
1 PIP, $n(\%)$	159 (30.1)	126 (23.9)	159 (30.2)	0.035
≥ 2 PIPs, n (%)	60 (11.4)†	69 (13.1)°	155 (29.4)†°	< 0.001

Polytherapy and the risk of potentially inappropriate prescriptions (PIPs) among elderly and very elderly patients in three different settings (hospital, community, long-term care facilities) of the Friuli Venezia Giulia region, Italy: are the very elderly at higher risk of PIPs? Cojutti P, Arnoldo L, Cattani G, Brusaferro S, Pea F. *Pharmacoepidemiol Drug Saf* 2016;25(9):1070-8

	1 PIP		≥2 PIPs		
Variables	OR (95%CI)	р	OR (95%CI)	р	
Age (years)					
65–79	1		1	_	
>79	1.416 (1.105–1.813)	0.006	1.372 (1.025–1.837)	0.033	
Sex					
Male	1		1		
Female	1.071 (0.835–1.376)	0.588	1.629 (1.202-2.207)	0.002	
Drug prescriptions					
Normal	1		1		
Polypharmacy	3.019 (2.267-4.020)	< 0.001	2.322 (1.657-3.253)	< 0.001	
Hyperpolypharmacy	4.964 (3.283-7.506)	< 0.001	6.744 (4.318–10.534)	< 0.001	
Underlying diseases	1.207 (0.832-1.752)	0.322	1.130 (0.732–1.746)	0.581	
CKD	1.153 (0.849–1.567)	0.361	1.445 (1.029–2.027)	0.033	

-

Polytherapy and the risk of potentially inappropriate prescriptions (PIPs) among elderly and very elderly patients in three different settings (hospital, community, long-term care facilities) of the Friuli Venezia Giulia region, Italy: are the very elderly at higher risk of PIPs?

Cojutti P, Arnoldo L, Cattani G, Brusaferro S, Pea F. Pharmacoepidemiol Drug Saf 2016;25(9):1070-8

		PIPs			
Medication	Hospital $(n = 307)$	GP (<i>n</i> = 292)	LTCF (<i>n</i> = 553)	р	
ID					
Benzodiazepines	75 (24.4)*	114 (39.0)*°	144 (26.0)°	< 0.001	
Antipsychotics, first and second generation	54 (17.6)*†	15 (5.1)*°	149 (26.9)†°	< 0.001	
Amiodarone	39 (12.7)*†	15 (5.1)*	13 (2.4)†	< 0.001	
Apha 1-blockers	24 (7.8)†	35 (12.0)°	13 (2.4)†°	< 0.001	
Antiarrhythmic drugs	16 (5.2)	29 (9.9)°	16 (2.9)°	< 0.001	
Digoxin > 0.125 mg/d	12 (3.9)†	5 (1.7)	4 (0.7)†	0.004	
Antithrombotics	11 (3.6)*	24 (8.2)*°	10 (1.8)°	< 0.001	
Alpha agonists, central	8 (2.6)	3 (1.0)	10 (1.8)	0.353	
Zolpidem	7 (2.3)	9 (3.1)	14 (2.5)	0.818	
Barbiturates	4 (1.3)†	3 (1.0)°	30 (5.4)†°	< 0.001	
Metoclopramide	4 (1.3)	0 (0)	5 (0.9)	0.175	
Tertiary TCAs, alone or in combination	3 (1.0)	3 (1.0)	8 (1.4)	0.788	
Spironolactone $> 25 \text{ mg/d}$	2 (0.7)	1 (0.3)	1 (0.2)	0.532	
Nitrofurantoin	2 (0.7)	0 (0)	3 (0.5)		
Skeletal muscle relaxants	2 (0.7)	0 (0)	1 (0.2)		
Estrogens with or without progestins	1 (0.3)	2 (0.7)	0 (0)		
Anticholinergics	1 (0.3)	0 (0)	5 (0.9)	_	
Ergot mesylates	0 (0)	1 (0.3)	0 (0)		
DD					
Dementia and cognitive impairment	30 (9.8)†	17 (5.8)°	121 (21.9)†°	< 0.001	
Heart failure	10 (3.3)†	5 (1.7)	2 (0.4)†	0.003	
Chronic seizures or epilepsy	1 (0.3)	0 (0)	0 (0)		
Chronic kidney disease (stages IV and V)	1 (0.3)	4 (1.4)	0 (0)		
Parkinson's disease	0 (0)	3 (1.0)	4 (0.7)	_	
History of gastric or duodenal ulcers	0 (0)	4 (1.4)	0 (0)	_	

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Antimicrobial treatement of bacterial infections in frail elderly patients: the difficult balance between efficacy, safety and tolerability Pea F. *Current Opin Pharmacol.* 2015;24:18-22

Antimicrobials - Warfarin

Antimicrobials - Antidiabetics

Macrolide - Statins

Antimicrobials - renal excretion

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Concurrent Use of Warfarin and Antibiotics and the Risk of Bleeding in Older Adults Baillargeon J et al. *Am J Med* 2012; 125: 183-189

BASELINE CHARACTERISTICS FOR CASES AND MATCHED CONTROLS

Characteristic	Matched Controlsª n (%)	Cases n (%)	P Value†
All	2394 (100)	798 (100)	
Indication for			
wartarin use in			
2007 Atrial	1302 (54 4)	434 (54 4)	1 000
fibrillation	1502 (54.4)	454 (54.4)	1.000
Other	597 (24.9)	199 (24.9)	
Prosthetic heart	207 (8.7)	69 (8.7)	
valve			
Stroke	87 (3.6)	29 (3.6)	
Venous	201 (8.4)	67 (8.4)	
thromboembolism	n		
Multiple			
indications for			
wariarin use	1900 (70.0)	61/ (76.0)	222
N V	504 (21 0)	194(70.9)	.235
Arre at 2008 years	504 (21.0)	164 (23.1)	
66-70	247 (10.3)	86 (10.8)	.973
71-75	465 (19.4)	152 (19.1)	
76-80	536 (22.4)	171 (21.4)	
81-85	539 (22.5)	183 (22.9)	
>85	607 (25.4)	206 (25.8)	
Race			
White	2109 (88.1)	698 (87.5)	.517
Black	168 (7.0)	61 (7.6)	
Hispanic	83 (3.5)	23 (2.9)	
Other/unknown	34 (1.4)	16 (2.0)	
Sex	027 (25 0)	270 (27 5)	1 000
Fomalo	837 (35.0)	279 (34.5)	1.000
Charlson	1557 (05.0)	519 (05.0)	
Comorbidity Index ^b			
0	1129 (47.2)	319 (40.0)	<.001
1	601 (25.1)	173 (21.7)	
2	319 (13.3)	128 (16.0)	
3	172 (7.2)	78 (9.8)	
≥4	173 (7.2)	100 (12.5)	
Resided in a			
nursing home			
within 90 days			
date			
N	2160 (90.2)	623 (86 3)	< 002
Y	234 (9.8)	104 (13.7)	STOOL

Case-control study nested within a cohort of 38,762 patients (Medicare part D prescription drug program) aged 65 years and older who were continuous warfarin users

Cases were defined as patients hospitalized for a primary diagnosis of bleeding

1:3 control subjects on age, race, sex, and indication for warfarin

Concurrent Use of Warfarin and Antibiotics and the Risk of Bleeding in Older Adults Baillargeon J et al. *Am J Med* 2012; 125: 183-189

ASSOCIATION BETWEEN SPECIFIC ANTIBIOTIC AGENT EXPOSURE AND HOSPITALIZATION FOR BLEEDING

Antibiotic Drug	Matched Controls ^a n (%)	Cases n (%)	Univariate OR (95% CI)	Multivariable ^b OR (95% CI)
Azole antifungals	8 (0.33)	17 (2.13)	6.49 (2.79-15.10)	4.57 (1.90-11.03)
Macrolides	35 (1.46)	24 (3.01)	2.09 (1.24-3.54)	1.86 (1.08-3.21)
Quinolones	56 (2.34)	40 (5.01)	2.20 (1.46-3.33)	1.69 (1.09-2.62)
Cotrimoxazole	22 (0.92)	22 (2.76)	3.06 (1.68-5.55)	2.70 (1.46-5.05)
Penicillins	50 (2.09)	31 (3.88)	1.89 (1.20-2.99)	1.92 (1.21-2.07)
Cephalosporins	39 (1.63)	36 (4.51)	2.85 (1.80-4.52)	2.45 (1.52-3.95)

Statin toxicity from macrolide antibiotic co-prescription: a population-based cohort study Patel AM et al. Ann Intern Med 2013;158:869-76

Characteristic	Clarithromycin and Erythromycin (n = 75 858)†	Azithromycin $(n = 68 478)$	Standardized Difference‡	P Valu
Demographic				
Mean age (SD), y	74 (6)	74 (6)	0.01	0.73
Women	40 130 (52.9)	36 323 (53.0)	0.01	0.59
Income guintile§				< 0.00
1 (low)	15 858 (20.9)	13 686 (20.0)	0.03	
2	16 481 (21.7)	14 408 (21.0)	0.02	
3 (middle)	14 982 (19.8)	13 594 (19.9)	0.01	
4	14 391 (19.0)	13 268 (19.4)	0.01	
5 (high)	13 917 (18.3)	13 272 (19.4)	0.03	
Index date				< 0.00
2003-2004	20 972 (27 6)	19 179 (28 0)	0.01	
2005-2006	23 028 (30.4)	20 146 (29 4)	0.02	
2007-2008	18 703 (24 7)	16 841 (24 6)	0.01	
2009–2010	13 155 (17.3)	12 313 (18.0)	0.02	
Comorbid condition				
Chronic kidney diseasel	6210 (9.2)	5520 (9.4)	0.01	0.44
Corobrovascular disease	2190 (4.2)	2765 (4.0)	0.01	0.44
Deriphoral vaccular disease	2101 (2.9)	1944 (2.7)	0.01	0.11
Coronany arteny disease	2101 (2.0)	26 005 (54 0)	0.02	<0.07
Congestive heart failure	42 652 (46 7)	30 995 (54.0)	0.01	< 0.00
Systemic malignancy	21 875 (28.8)	19 955 (29.1)	0.01	0.00
-)	2.1.2.(22.2)			
Statin characteristic				
Туре				0.00
Atorvastatin	55 027 (72.5)	50 111 (73.2)	0.02	
Simvastatin	18 421 (24.3)	16 369 (23.9)	0.01	
Lovastatin Dose	2410 (3.2)	1998 (2.9)	0.02	0.26
High-dose statin**	30 296 (40 0)	27 550 (40 2)	0.01	0.20
Low-dose statintt	45 562 (60.0)	40 928 (59.8)	0.01	
Medication use in preseding year				
Oral huma shararria an inculia	20.267 (26.8)	47 840 (20 0)	0.02	-0.00
R Placker	20 367 (20.8)	77 009 (20.0)	0.02	< 0.00
p-blockers Versnamil er diltigren	29 3 10 (38.6)	27 006 (39.4)	0.02	0.00
Veraparnii or dittazem	/941 (10.5)	7206 (10.5)	0.01	0.73
Ose of other calcium-channel blockers	18 521 (24.4)	16 982 (24.8)	0.01	0.09
Potassium-sparing diuretics	330/ (4.4)	2992 (4.4)	0.01	0.93
Non-potassium-sparing diuretics	26 901 (35.5)	24 /20 (36.1)	0.01	0.01
NSAIDS (excluding aspirin)	16 516 (21.8)	14 /9/ (21.6)	0.01	0.45
ACE INNIDITOR OF AKB	49 017 (64.6)	44 323 (64./)	0.01	0.67

population-based, retrospective cohort study of adults older than 65 years by using linked health care databases in Ontario, Canada

All older adults in Ontario with ongoing continuous prescriptions for statins metabolized by CYP3A4 (atorvastatin, simvastatin, or lovastatin) were selected.

Patients were followed for 30 days after the index date to assess outcomes.

The primary outcome was hospitalization with rhabdomyolysis.

The 3 secondary outcomes were hospitalization with AKI, hospitalization with hyperkalemia, and all-cause mortality.

Statin toxicity from macrolide antibiotic co-prescription: a population-based cohort study Patel AM et al. *Ann Intern Med* 2013;158:869-76

Table 4. Outcomes Assessed Using Hospital-Based Diagnosis Codes*

Outcome	Events, <i>n (%)</i> †		Absolute Risk Difference	Number Needed to Harm	Unadjusted Relative Risk	Adjusted Relative Risk
	Clarithromycin and Erythromycin (n = 75 858)‡	Azithromycin ($n = 68 478$)§	(95% CI), %	(95% CI)∥	(95% CI)	(95% CI)¶
Rhabdomyolysis	24 (0.03)	10 (0.01)	0.02 (0.01 to 0.03)	5870 (3068 to 67 758)	2.17 (1.04 to 4.53)	2.17 (1.03 to 4.52)
Acute kidney injury	347 (0.46)	176 (0.26)	0.20 (0.14 to 0.26)	499 (382 to 718)	1.78 (1.49 to 2.14)	1.83 (1.52 to 2.19)
Hyperkalemia	61 (0.08)	42 (0.06)	0.02 (-0.01 to 0.05)	-	1.31 (0.89 to 1.94)	1.32 (0.89 to 1.94)
All-cause mortality	529 (0.70)	306 (0.45)	0.25 (0.17 to 0.33)	399 (304 to 577)	1.57 (1.36 to 1.80)	1.57 (1.37 to 1.82)

Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin or moxifloxacin in Taiwan Chou HW et al. *Clin Infect Dis* 2013;87:971-80

In a population-based inception cohort study of diabetic patients covering the period from January 2006 to November 2007, outpatient new users of levofloxacin, ciprofloxacin, moxifloxacin, cephalosporins, and macrolides orally were identified.

Study events were defined as emergency department visits or hospitalization for dysglycemia within 30 days following the initiation of antibiotic therapy. Results were analyzed with adjusted multinomial propensity score.

Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin or moxifloxacin in Taiwan Chou HW et al. *Clin Infect Dis* 2013;87:971-80

Antibiotic Group	No.	Events	Incidence (‰)	Time to Event, d, Mean ± SD	Crude OR (95% CI)	Adjusted OR (95% CI)
Hyperglycemia						
Macrolides	29 565	48	1.62	7.92 ± 9.46	1.00	1.00
Cephalosporins	20 317	42	2.07	8.17 ± 9.23	1.27 (.84–1.93)	1 36 (87-2 13)
Moxifloxacin	4221	29	6.87	3.90 ± 7.20	4.25 (2.68-6.75)	2.48 (1.50-4.12)
Levofloxacin	11 766	46	3.91	6.22 ± 8.49	2.41 (1.61-3.62)	1.75 (1.12–2.73)
Ciprofloxacin	12 564	50	3.98	5.60 ± 8.12	2.46 (1.65-3.65)	1.87 (1.20–2.93)
Hypoglycemia						
Macrolides	29 565	110	3.72	6.32 ± 6.81	1.00	1.00
Cephalosporins	20 317	65	3.20	7.72 ± 9.83	0.90 (.63–1.17)	0.94 (.68–1.32)
Moxifloxacin	4221	42	9.95	7.02 ± 9.51	2.69 (1.88-3.85)	2.13 (1.44–3.14)
Levofloxacin	11 766	109	9.26	7.12 ± 8.48	2.50 (1.92-3.27)	1.79 (1.33–2.42)
Ciprofloxacin	12 564	99	7.88	9.16 ± 9.40	2.12 (1.62–2.79)	1.46 (1.07–2.00)

Table 2. Risk of Hyperglycemia and Hypoglycemia Associated With Antibiotic Use in Each Group of Antibiotics

- Fluoroquinolones were associated with higher risk of hyperglycemia and hypoglycemia, compared to macrolides and cephalosporins in diabetics.
- The risk varied according to the type of fluoroquinolone.
- Moxifloxacin as the drug associated with the highest risk of hypoglycemia,

Treatment options for community-acquired pneumonia in the elderly people

Petrosillo N. et al. Expert Rev. Anti Infect. Ther. 13(4), 473–485 (2015)

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Treatment options for community-acquired pneumonia in the elderly people

Petrosillo N. et al. Expert Rev. Anti Infect. Ther. 13(4), 473–485 (2015)

Table 1. Renally cleared antimicrobials requiring adjustments of maintenance dosages in patients with renal impairment.

Drug	CLCr 30–60 ml/min	CLCr <30 ml/min				
Time-dependent antimicrobials						
Cefepime	1g q8h	1 g q12h				
Cefotaxime	1 g q8h	0.5–1 g q12h				
Ceftazidime	1 g q8h	0.5–1 g q12h				
Clarithromycin	0.5 g q12h	0.25 g q12h				
Imipenem	0.25 g q6h	0.125 g q6h				
Meropenem	0.25 g q6h	0.125 g q6h				
Piperacillin/tazobactam	2.25 g q6h	2.25 g q8–12h				
Vancomycin	3.75 mg/kg q6h	3.75 mg/kg q12h				
Concentration-dependent antimicrobials						
Amikacin	15 mg/kg q48h	15 mg/kg q72h				
Gentamycin	3–5 mg/kg q48h	3–5 mg/kg q72h				
Levofloxacin	0.5 g q24h	0.5 g q48h				

Box 3. Nonrenally cleared antimicrobials not requiring dosage adjustments in patients with renal impairment.

Time-dependent antimicrobials:

- Ceftriaxone 2 g q24h
- Linezolid 600 mg q12h

Concentration-dependent antimicrobials:

- Azithromycin 500 mg q24h
- Ciprofloxacin 600 mg q12h (iv.); 750 mg q12h (OS)
- Moxifloxacin 400 mg q24h
- Doxycycline 100 mg q12h

"I stopped taking the medicine because I prefer the original disease to the side effects."

