

Emanuele Marzetti

BIOMARKERS OF PHYSICAL FRAILTY (AND SARCOPENIA)

Roma, 30 novembre - 3 dicembre 2022 UNIVERSITÀ CATTOLICA DEL SACRO CUORE

CONFLICT OF INTEREST DISCLOSURE

Consultant for

- Abbott
- Cepton
- Nutricia
- Pfizer

BIOMARKER

A defined **characteristic** that is **measured** as an indicator of **normal** biological processes, **pathogenic** processes, or **responses** to an exposure or intervention, including therapeutic interventions.

FDA-NIH Biomarker Working Group

LA LONGEVITÀ DECLINATA AL FEMMINILE

Società Italiana Di gerontologia E geriatria

Category	Definition/aim	Example
Susceptibility/Risk biomarker	Potential for developing a disease or medical condition in apparently healthy individual	Breast Cancer genes 1 and 2 (BRCA1/2) mutations in breast cancers
Diagnostic biomarker	Detect or confirm the presence of a disease	Blood sugar or hemoglobin A1c (HbA1c) for diabetes
Monitoring biomarker	Assessing the status of a disease or the effect of interventions	Prostate-specific antigen (PSA) in patient with prostate cancer
Prognostic biomarker	Identify the likelihood of a clinical event, disease recurrence, or progressio n	Prostate-specific antigen (PSA) in patient with prostate cancer
Predictive biomarker	Identify individuals who are more likely to experience a favorable or unfavorable effect from a specific intervention or exposure	Epidermal Growth Factor Receptor (EGFR) mutations in NSCLC patients to select patients for anti-EGFR drug therapy
Pharmaco-dynamic/ Response biomarker	Show that a biological response has occurred in an individual who has received an intervention or exposure	Blood pressure for antihypertensive agent or sodium restriction

LA LONGEVITÀ DECLINATA AL FEMMINILE

Società Italiana Di gerontologia E geriatria

Category	Definition/aim	Frailty and sarcopenia biomarkers
Susceptibility/Risk biomarker	Potential for developing a disease or medical condition in apparently healthy individual	
Diagnostic biomarker	Detect or confirm the presence of a disease	
Monitoring biomarker	Assessing the status of a disease or the effect of interventions	
Prognostic biomarker	Identify the likelihood of a clinical event, disease recurrence, or progressio n	
Predictive biomarker	Identify individuals who are more likely to experience a favorable or unfavorable effect from a specific intervention or exposure	
Pharmaco-dynamic/ Response biomarker	Show that a biological response has occurred in an individual who has received an intervention or exposure	

MAJOR OBSTACLES TO THE DEVELOPMENT OF BIOMARKERS FOR FRAILTY AND SARCOPENIA

- Multiple and only partly overlapping operational definitions.
- Complex, multifactorial conditions.
- Incomplete knowledge of pathogenesis.
- Multiple mechanisms are likely to be simultaneously involved in development of frailty and sarcopenia → multiple biomarkers may be needed to fully frame the conditions.
- Frailty and sarcopenia (usually) develop over years and pathogenic processes may not
 necessarily be the same during their whole course → different biomarkers may be needed
 depending on the stage.

Operationalization of Frailty Using Eight Commonly Used Scales and Comparison of Their Ability to Predict All-Cause Mortality

ÂMERICAN GERIATRICS SOCIETY

AGS

Olga Theou, PhD, * Thomas D. Brothers, BA, * Arnold Mitnitski, PhD, * and Kenneth Rockwood, $MD^{*\dagger}$

Figure 1. Prevalence of frailty. SHARE = Survey of Health, Ageing and Retirement in Europe; FI-CGA = Frailty Index based on a Comprehensive Geriatric Assessment.

LA LONGEVITÀ DECLINATA AL FEMMINILE

Meza-Valderrama et al., Nutrients 2021

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

LA LONGEVITÀ DECLINATA AL FEMMINILE

SOCIETÀ ITALIANA DI GENARIA E CENARIA E CENARI

PHYSICAL FRAILTY & SARCOPENIA: THE NEW KID ON THE BLOCK

Landi et al., Clin Geriatr Med 2015

Marzetti et al., Transl Med UniSa 2016

LA LONGEVITÀ DECLINATA AL FEMMINILE

Aging Clin Exp Res (2017) 29:81–88 DOI 10.1007/s40520-016-0716-1

ORIGINAL ARTICLE

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

Rationale for a preliminary operational definition of physical frailty and sarcopenia in the SPRINTT trial

Matteo Cesari^{1,2} · Francesco Landi³ · Riccardo Calvani³ · Antonio Cherubini⁴ · Mauro Di Bari^{5,6} · Patrick Kortebein^{7,8,9} · Susanna Del Signore¹⁰ · Regis Le Lain¹¹ · Bruno Vellas^{1,2} · Marco Pahor¹² · Ronenn Roubenoff¹³ · Roberto Bernabei³ · Emanuele Marzetti³ · For the SPRINTT Consortium

LA LONGEVITÀ DECLINATA AL FEMMINILE

European Journal of Internal Medicine 56 (2018) 19–25 Contents lists available at ScienceDirect

European Journal of Internal Medicine

journal homepage: www.elsevier.com/locate/ejim

The "BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons" (BIOSPHERE) study: Rationale, design and methods

NTER

Riccardo Calvani^{a,1}, Anna Picca^{a,*}, Federico Marini^b, Alessandra Biancolillo^b, Matteo Cesari^{c,d}, Vito Pesce^e, Angela Maria Serena Lezza^e, Maurizio Bossola^f, Christiaan Leeuwenburgh^g, Roberto Bernabei^a, Francesco Landi^a, Emanuele Marzetti^a

BIOSPHERE was designed to develop a biomarker discovery procedure for PF&S, using multivariate methodologies as an alternative approach to traditional single-marker strategies

FIT-FOR-PURPOSE STATISTICS

- Statistics were mostly borrowed from chemometrics and were chosen to handle correlated, multi-platform variables.
- Tests were selected to identify biomarker patterns within a large number of analytes collected in a relatively small participant sample.
- Robust cross-validation procedures were applied to ensure findings were not attributable to chance correlations.

"Data don't make any sense, we will have to resort to statistics."

The Hallmarks of Aging

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

Carlos López-Otín,¹ Maria A. Blasco,² Linda Partridge,^{3,4} Manuel Serrano,^{5,*} and Guido Kroemer^{6,7,8,9,10}

CONGRESSO NAZIONALE SIGG

LA LONGEVITÀ DECLINATA AL FEMMINILE

New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary

www.aging-us.com

LA LONGEVITÀ DECLINATA AL FEMMINILE

CrossMark

GeroScience (2018) 40:419-436 https://doi.org/10.1007/s11357-018-0042-y

REVIEW ARTICLE

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the **TAME Biomarkers Workgroup**

Jamie N. Justice 💿 · Luigi Ferrucci · Anne B. Newman · Vanita R. Aroda · Judy L. Bahnson · Jasmin Divers · Mark A. Espeland · Santica Marcovina · Michael N. Pollak · Stephen B. Kritchevsky · Nir Barzilai · George A. Kuchel

Blood-based biomarkers for geroscience-guided trials

Biomarker		Underlying Biologic Process & Role
IL-6, CRP TNFRII		Inflammation & Intercellular Signaling Interleukin 6 (IL-6) is a proinflammatory cytokine and Tumor Necrosis Factor-α RII is a TNF -α receptor involved in acute-phase response. C-Reactive Protein (CRP) is an acute phase protein produced in response to inflammation. Cytokine dysregulation is a driver of pathophysiologic processes leading to disease, functional decline, frailty, and death.
GDF15	*	Stress Response & Mitochondria Growth Differentiating Factor 15 (GDF15) is a member of the TGF- β superfamily robustly associated with mortality, cardiovascular events, cognitive decline and dementia. GDF15 is increasingly recognized in mitochondrial dysfunction, and as a biomarker of aging.
IGF-1 Insulin		Nutrient Signaling Disruption of the insulin/ insulin-like growth factor (IGF-1) signaling pathway is implicated in longevity in animal models. In humans, IGF-1 and fasting insulin are responsive to caloric restriction, and low IGF-1 in growth hormone receptor deficiency conveys disease protection.
Cystatin-C	6	Kidney Aging Cystatin C, an extracellular inhibitor of cysteine proteases, is a marker of renal disease and aging. It is an independent risk factor for all cause and CVD-related mortality, and multi-morbidity, and higher levels are consistently associated with poor physical function and cognition.
NT-proBNP	-1/4-00-	Cardiovascular Health B-type natriuretic peptides (BNP, NT-proBNP) are secreted in response to cardiomyocyte stretching to decrease vascular resistance. NT-proBNP has a greater-half life and accuracy compared with BNP and is used to diagnose and establish prognosis for heart failure.
HGBA1c		Metabolic Aging Glycated hemoglobin (hemoglobin A1c, HGBA1c) is formed in a non-enzymatic glycation pathway and is a marker for 3-mo average plasma glucose. High HGBA1c reflects poor glucose control, and in older nondiabetics is strongly associated with death, chronic disease, and functional decline.
Molecular Signature		Epigenetic, Interdependent, Multi-Omic Data intensive molecular platforms can explore global changes in epigenetic, transcriptomic, proteomic and proteostasis, and small metabolite signatures. These approaches may better capture complex and multifactorial processes underlying aging.

PHYSICAL FRAILTY & SARCOPENIA: A PROTOTYPICAL GEROSCIENCE CONDITION

Muscle-specific processes

- Mitochondrial dysfunction
- Redox imbalance
- Alterations in protein homeostasis
- Acceleration of myonuclear apoptosis
- Dysregulation of autophagy
- Neuromuscular junction aberrant remodeling
- Iron dyshomeostasis

Non-muscle-specific processes

- Systemic inflammation
- Hormonal changes
- Telomere shortening (senescence)
- Malnutrition
- Gut dysbiosis

Nutrients 2018, 10, 1691; doi:10.3390/nu10111691

A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study

Riccardo Calvani ^{1,2}, Anna Picca ^{1,2,*}, Federico Marini ³, Alessandra Biancolillo ³, Jacopo Gervasoni ^{1,2}, Silvia Persichilli ^{1,2}, Aniello Primiano ², Hélio José Coelho-Junior ^{2,4}, Maurizio Bossola ^{1,2}, Andrea Urbani ^{1,2}, Francesco Landi ^{1,2}, Roberto Bernabei ^{1,2} and Emanuele Marzetti ¹

Controls:	78.5 ±6.0%
PF&S:	75.1 ±4.6%
Total:	75.6 ±3.9%

	PF&S $(n = 38)$	nonPF&S $(n = 30)$	VIP	RP
α-aminobutyric acid (µmol/L)	20.0 ± 4.9	22.3 ± 5.7	2.2	8.0
Asparagine (µmol/L)	91.0 ± 12.6	77.8 ± 13.4	3.4	2.0
Aspartic Acid (µmol/L)	24.6 ± 5.4	17.0 ± 4.0	5.8	2.6
Citrulline (µmol/L)	44.8 ± 12.1	36.8 ± 11.5	2.1	2.8
Ethanolamine (µmol/L)	10.3 ± 1.7	9.0 ± 2.2	1.7	9.9
Glutamic acid (µmol/L)	71.7 ± 16.6	54.3 ± 21.2	2.3	8.5
Methionine (µmol/L)	22.6 ± 2.8	23.4 ± 5.7	1.3	6.3
Sarcosine (µmol/L)	1.9 ± 0.6	1.5 ± 0.5	1.4	8.0
Taurine (µmol/L)	220.1 ± 36.5	189.5 ± 47.2	1.8	6.7

SIGG CONGRESSO NAZIONALE

LA LONGEVITÀ DECLINATA AL FEMMINILE

Experimental Gerontology 122 (2019) 129-138

Contents lists available at ScienceDirect

Experimental Gerontology

journal homepage: www.elsevier.com/locate/expgero

Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty "cytokinome" at its core

Emanuele Marzetti^a, Anna Picca^{a,b,*}, Federico Marini^c, Alessandra Biancolillo^c, Hélio José Coelho-Junior^{b,d}, Jacopo Gervasoni^{a,b}, Maurizio Bossola^{a,b}, Matteo Cesari^{e,f}, Graziano Onder^{a,b}, Francesco Landi^{a,b}, Roberto Bernabei^{a,b,*}, Riccardo Calvani^{a,b}

Gerontology	

Controls:	68.7 ± 2.5%
PF&S:	82.3 ± 1.6%
Total:	75.6 ± 1.3%

	Women (n=125)		Men	(n=75)
	PF&S (n=75)	NonPF&S (n=50)	PF&S (n=25)	NonPF&S (n=50)
MPO (ng/mL)	227.5 (182.3)	667.3 (593.4)	313.0 (263.5)	558.0 (490.3)
PDGF-BB (ng/mL)	3.1 (1.8)	3.9 (2.5)	2.8 (1.2)	3.6 (1.8)
IL8 (pg/mL)	9.85 (6.5)	13.6 (10.2)	9.3 (5.4)	15.8 (12.9)
MCP-1 (pg/mL)	31.8 (10.1)	34.6 (14.0)	30.3 (16.4)	43.3 (25.5)
CRP (mg/L)	2.8 (4.1)	1.8 (2.1)	3.2 (7.3)	1.8 (2.1)
MIP-1β (pg/mL)	175.6 (72.4)	176.2 (76.7)	144.0 (88.0)	189.4 (58.4)
MIP-1α (pg/mL)	3.3 (10.5)	4.2 (10.6)	4.3 (10.4)	5.9 (9.8)
P-selectin (ng/mL)	108.8 (39.5)	95.7 (47.3)	99.1 (47.0)	108.0 (39.7)
Eotaxin (pg/mL)	158.8 (167.3)	133.6 (182.1)	183.0 (175.4)	169.0 (137.9)
IL17 (pg/mL)	17.0 (7.0)	18.7 (7.0)	14.6 (7.4)	20.5 (10.5)
IFNγ (pg/mL)	2.5 (0.7)	3.0 (1.2)	2.5 (0.7)	3.2 (2.3)
FGF b (pg/mL)	44.9 (20.1)	51.2 (24.0)	39.4 (19.9)	53.9 (24.4)
TNF-α (pg/mL)	37.5 (23.9)	44.1 (26.3)	32.7 (19.2)	48.3 (35.6)

LA LONGEVITÀ DECLINATA AL FEMMINILE

GeroScience https://doi.org/10.1007/s11357-020-00197-x

ORIGINAL ARTICLE

Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study

Riccardo Calvani () · Anna Picca () · Federico Marini () · Alessandra Biancolillo () · Jacopo Gervasoni () · Silvia Persichilli () · Aniello Primiano () · Hélio J. Coelho-Junior () · Matteo Cesari () · Maurizio Bossola () · Andrea Urbani () · Graziano Onder () · Francesco Landi () · Roberto Bernabei () · Emanuele Marzetti ()

Table 2 Composition of matrices used for sequential and orthogonalized covariance selection (SO-CovSel) analysis		
Data block	Number of variables	Variables
Matrix 1	27	IL1-β, IL1-ra, IL2, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12, IL13, IL15, IL17, FGF basic, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α, MIP-1β, CCL5, CCL11, IP-10, PDGF-BB, TNF-α
Matrix 2	4	CRP, MPO, FGF-21, BDNF
Matrix 3	6	CAF, P-Selectin, HtrA1, Hsp72, P3NP, IGF-1
Matrix 4	37	1-methylhistidine, 3-methylhistidine, 4-hydroxyproline, α -aminobutyric acid, β -alanine, β -aminobutyric acid, γ -aminobutyric acid, alanine, aminoadipic acid, anserine, arginine, asparagine, aspartic acid, carnosine, citrulline, cystathionine, cystine, ethanolamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, phosphoethanolamine, phosphoserine, proline, sarcosine, serine, taurine, threonine, tryptophan, tyrosine, valine

LA LONGEVITÀ DECLINATA AL FEMMINILE

GeroScience https://doi.org/10.1007/s11357-020-00197-x

ORIGINAL ARTICLE

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study

Riccardo Calvani () · Anna Picca () · Federico Marini () · Alessandra Biancolillo () · Jacopo Gervasoni () · Silvia Persichilli () · Aniello Primiano () · Hélio J. Coelho-Junior () · Matteo Cesari () · Maurizio Bossola () · Andrea Urbani () · Graziano Onder () · Francesco Landi () · Roberto Bernabei () · Emanuele Marzetti ()

Controls:	79.9 ± 5.1%
PF&S:	80.6 ± 5.3%
Total:	80.3 ± 3.8%

Candidate biomarkers	Biological actions and putative roles in PF&S pathophysiology		
MPO PDGF-BB		Inflammation, immunosenescence, and "hormetic" regenerative signals MPO is a pro-inflammatory cytokine mainly secreted by neutrophils at sites of inflammation. PDGF-BB is a growth factor involved in platelet-mediated regeneration of skeletal muscle. Reduced levels of MPO and PDGF may be indicative of immunosenescence and decreased muscle regenerative capacity.	
Asparagine Aspartic acid Citrulline		Nitrogen and glutamine metabolism Citrulline is synthesised from glutamine and is involved in nitrogen homeostasis. Asparagine and aspartic acid are metabolised in resting muscles and provide metabolic intermediates for glutamine synthesis. High levels of asparagine, aspartic acid, and citrulline in PF&S may suggest perturbations in nitrogen and glutamine metabolism.	
α-aminobutyric acid	Redox balance GHS GSSG	Oxidative stress α -aminobutyric acid is a non-essential amino acid involved in glutathione metabolism. Reduced levels of α -aminobutyric acid in older people with PF&S may suggest perturbations in glutathione biosynthesis and redox balance.	
Hsp72	Beneficial effects Hormetic window Adverse effects	Stress response Hsp72 is produced in response to a variety of stressors. Hsp72 exhibits potent immunomodulatory effects. Low Hsp72 levels in older people with PF&S may suggest perturbations in hormetic stress signals.	

LA LONGEVITÀ DECLINATA AL FEMMINILE

Article

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study

Anna Picca ^{1,2}, Francesca Romana Ponziani ², Riccardo Calvani ^{1,2,*}, Federico Marini ³, Alessandra Biancolillo ^{3,4}, Hélio José Coelho-Júnior ⁵, Jacopo Gervasoni ^{1,2}, Aniello Primiano ^{1,2}, Lorenza Putignani ⁶, Federica Del Chierico ⁷, Sofia Reddel ⁷, Antonio Gasbarrini ^{1,2}, Francesco Landi ^{1,2}, Roberto Bernabei ^{1,2,*} and Emanuele Marzetti ^{1,2}

 Table 2. Composition of the multi-block dataset used for Sequential and Orthogonalized Covariance

 Selection (SO-CovSel) analysis.

Data Block	Biological Pathway	Variables
Matrix 1	Inflammation	CCL5, CCL11, IFN-γ, FGF-β, G-CSF, GM-CSF, IL1β, IL1ra, IL2, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12, IL13, IL15, IL17, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, TNF-α
Matrix 2	Protein/amino acid metabolism	1-methylhistidine, 3-methylhistidine, 4-hydroxyproline, α-aminobutyric acid, β-alanine, β-aminobutyric acid, γ-aminobutyric acid, alanine, aminoadipic acid, anserine, arginine, asparagine, aspartic acid, carnosine, citrulline, cystathionine, cystine, ethanolamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, phosphoethanolamine, phosphoserine, proline, sarcosine, serine, taurine, threonine, tryptophan, tyrosine, valine
Matrix 3	Gut microbiota	Actinobacteria, Adlercreutzia, Aerostipes, Aerotruncus, Akkermansia, Alcaligenaceae, Atopobium, Bacteroidaceae, Bacteroides, Bacteroidetes, Barnesiellaceae, Bifidobacteriaceae, Bifidobacterium, Bilophila, Blautia, Carnobacteriaceae, Christensenella, Christensenellaceae, Clostridiaceae, Collinsella, Coprococcus, Coriobacteriaceae, Cyanobacteria, Dehalobacteriaceae, Dehalobacterium, Desulfovibrionaceae, Dethiosulfovibrionaceae, Dialister, Dorea, Eggerthella, Enterobacteriaceae, Enterococcaceae, Enterococcus, Erysipelotrichaceae, EtOH8, Eubacterium, Euryarchaeota, Faecalibacterium, Firmicutes, Granulicatella, Haemophilus, Lachnobacterium, Lachnospira, Lachnospiraceae, Methanobrevibacter, Mogibacteriacea, Oscillospira, Parabacteroides, Paraprevotella, Paraprevotellaceae, Pasteurellaceae, Peptostreptococcaceae, Roseburia, Ruminococcaceae, Ruminococcus, S24-7, Slackia, Streptococcues, Tury, Veillonella, Veillonellaceae, Verrucomicrobia. Verrucomicrobiaceae

LA LONGEVITÀ DECLINATA AL FEMMINILE

Article

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study

Anna Picca ^{1,2}, Francesca Romana Ponziani ², Riccardo Calvani ^{1,2,*}, Federico Marini ³, Alessandra Biancolillo ^{3,4}, Hélio José Coelho-Júnior ⁵, Jacopo Gervasoni ^{1,2}, Aniello Primiano ^{1,2}, Lorenza Putignani ⁶, Federica Del Chierico ⁷, Sofia Reddel ⁷, Antonio Gasbarrini ^{1,2}, Francesco Landi ^{1,2}, Roberto Bernabei ^{1,2,*} and Emanuele Marzetti ^{1,2}

 Table 2. Composition of the multi-block dataset used for Sequential and Orthogonalized Covariance

 Selection (SO-CovSel) analysis.

	Data Block	Data Block Biological Dathway		Variables	
abolic cal Frailty and ERE Study	Matrix 1	Controls: PF&S: Total:	91.7% <mark>87.5%</mark> 90.0%	CCL5, CCL11, IFN-γ, FGF-β, IL1ra, IL2, IL4, IL5, IL6, IL7, II IL15, IL17, IP-10, MCP-1, MIP TNF-α	G-CSF, GM-CSF, IL1β, .8, IL9, IL10, IL12, IL13, -1α, MIP-1β, PDGF-BB,
^{2,*} ^(D) , Federico Marini ³ ^(D) , asoni ^{1,2} , ³ , Sofia Reddel ⁷ , d Emanuele Marzetti ^{1,2} ^(D)	Matrix 2	l-m α- γ-ar arg Protein/amino acid metabolism glyα		 1-methylhistidine, 3-methylhistidine, 4-hydroxyproline, α-aminobutyric acid, β-alanine, β-aminobutyric acid, γ-aminobutyric acid, alanine, aminoadipic acid, anserine, arginine, asparagine, aspartic acid, carnosine, citrulline, cystathionine, cystine, ethanolamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, phosphoethanolamine, phosphoserine, proline, sarcosine, serine, taurine, threonine, tryptophan, tyrosine, valine 	
Table 4. Levels of relevant	t analytes as re	sulted from S	SO-CovS€	el analysis.	ipes, Aerotruncus, ım, Bacteroidaceae, ıe, Bifidobacteriaceae,
	PF&S (n	= 18)	nonPF&S ($n = 17$)		Carnobacteriaceae, , Clostridiaceae,
MIP-1α (pg/mL) partic acid (umol/L)	2.98 (11.04) 26.95 (9.33)		10.64 (11.15) 16.10 (9.28)		zeae, Cyanobacteria, Desulfovibrionaceae, orea, Eggerthella,
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_0.00)				?, Enterococcus,

			, crostrutticette,	
MIP-1α (pg/mL)	2.98 (11.04)	10.64 (11.15)	ceae, Cyanobacteria, Desulfovibrionaceae,	
Aspartic acid (µmol/L)	26.95 (9.33)	16.10 (9.28)	orea, Eggerthella, 2. Enterococcus.	
Threonine (µmol/L)	109.90 (33.60)	125.80 (55.60)	um, Euryarchaeota	
Barnesiellaceae (log2FC)	0.0010 (0.007)	0.0030 (0.003)	chnospiraceae,	
Christensenellaceae (log2FC)	0.0004 (0.005)	0.0023 (0.004)	ianobacteriaceae, ea, Oscillospira,	
Oscillospira (log2FC)	0.0147 (0.227)	0.0109 (0.009)	aprevotellaceae,	
Ruminococcus (log2FC)	0.0674 (0.091)	0.0620 (0.058)	Prevotellaceae,	
Data are show		ninococcus, S24-7,		
	1 0	Synergistetes, Tenericutes, TM	ccus, Sutterella, 7, Veillonella, Veillonellaceae,	
Synergistetes, tenericities, t M17, Ve				

Verrucomicrobia, Verrucomicrobiaceae

LA LONGEVITÀ DECLINATA AL FEMMINILE

The International Journal of Biochemistry & Cell Biology 45 (2013) 2288-2301 Contents lists available at ScienceDirect

The International Journal of Biochemistry & Cell Biology journal homepage: www.elsevier.com/locate/biocel

Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials^{*}

Emanuele Marzetti^{a,*,1}, Riccardo Calvani^{b,1}, Matteo Cesari^c, Thomas W. Buford^{d,e}, Maria Lorenzi^a, Bradley J. Behnke^e, Christiaan Leeuwenburgh^d

PROPOSED INTERVENTIONS

(CrossMark

LA LONGEVITÀ DECLINATA AL FEMMINILE

DI GERONTOLOGIA E GERIATRIA

MDPI

CONGRESSO NAZIONALE

LA LONGEVITÀ DECLINATA AL FEMMINILE

Review

Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease

Anna Picca ^{1,†}, Flora Guerra ^{2,†}, Riccardo Calvani ^{1,*}, Hélio José Coelho-Junior ³, Maurizio Bossola ^{1,3}, Francesco Landi ^{1,3}, Roberto Bernabei ^{1,3}, Cecilia Bucci ^{2,*} and Emanuele Marzetti ^{1,3}

Mildly oxidized mitochondria are targeted by phosphatase and tensin homolog-induced kinase 1 (PINK1) and Parkin. This priming process, in conjunction with oxidized cardiolipin (oxoCL)-driven membrane curvatures and other unknown proteins, assists in the generation of MDVs. MDVs reach out to the endolysosomal system and form multivesicular bodies (MVBs) that are extruded from cells as extracellular vesicles.

SIGG CONGRESSO NAZIONALE

LA LONGEVITÀ DECLINATA AL FEMMINILE

cells

MDPI

Α

ATP5A (a.u.)

120-

100

80

60-

40

20-

n

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

LA LONGEVITÀ DECLINATA AL FEMMINILE

SOCIETÀ ITALIANA DI GERONTOLOGIA E GERIATRIA

CONGRESSO NAZIONALE

LA LONGEVITÀ DECLINATA AL FEMMINILE

MDPI

1.0

0.8

0.6

0.4

0.2

0.0

Article

Circulating Inflammatory, Mitochondrial Dysfunction, and Senescence-Related Markers in Older Adults with Physical Frailty and Sarcopenia: A BIOSPHERE Exploratory Study

Anna Picca ^{1,2}, Riccardo Calvani ^{1,*}, Hélio José Coelho-Júnior ³, Federico Marini ⁴, Francesco Landi ^{1,3} and Emanuele Marzetti 1,30

IL1-β IL6 TNF-α Activin A **ICAM-1** Serpin E1 TIMP-1 **GFAP** GDF15 FGF21

LA LONGEVITÀ DECLINATA AL FEMMINILE

MDPI

Article

Circulating Inflammatory, Mitochondrial Dysfunction, and Senescence-Related Markers in Older Adults with Physical Frailty and Sarcopenia: A BIOSPHERE Exploratory Study

Anna Picca ^{1,2}⁽⁰⁾, Riccardo Calvani ^{1,*}⁽⁰⁾, Hélio José Coelho-Júnior ³⁽⁰⁾, Federico Marini ⁴⁽⁰⁾, Francesco Landi ^{1,3} and Emanuele Marzetti ^{1,3}⁽⁰⁾

74.0 ± 3.4%

Total:

Participants

SCIETÀ ITALIANA I GERONTOLOGIA E GERIATRA

CONCLUSION

- Multivariate/multidimensional modeling of complementary biomarkers is a suitable strategy for capturing the complexity of physical frailty & sarcopenia.
- The analytical approach applied in BIOSPHERE allowed identifying specific patterns of (biologically plausible) candidate biomarkers pertaining to complementary physiologic domains.
- Findings obtained in BIOSPHERE are preliminary and need to be validated longitudinally and in larger-scale studies.

Innovative Medicines Initiative – Joint Undertaking (IMI–JU 115621)

Fondazione Roma (NCDs call 2013)

Centro Studi "Achille e Linda Lorenzon"

LA LONGEVITÀ DECLINATA AL FEMMINILE

THANK YOU FOR YOUR ATTENTION!

"When you put it like that, it makes complete sense."

emanuele.marzetti@policlinicogemelli.it