

Diabete e Gender

Giuseppe Paolisso Università degli Studi della Campania – -Luigi Vanvitelli-Napoli

Relevant Finacial Disclosures

As Speaker, Advisory Board, and Consultant in the last 3 years:

Amarin

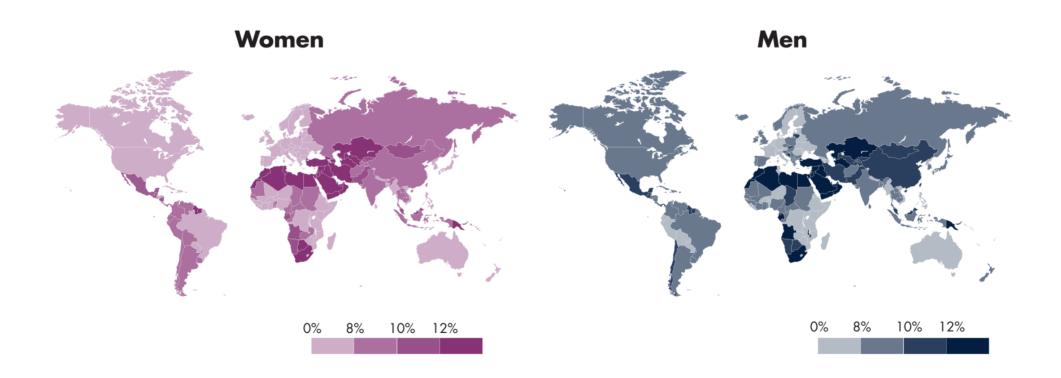
Novo-Nordisk

Eli-Lilly

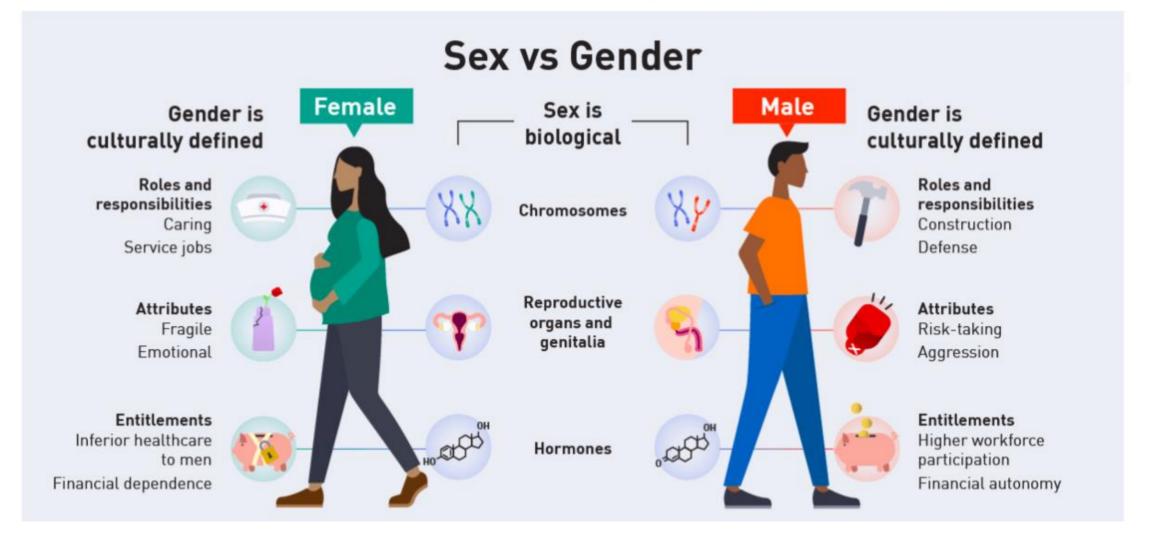
CONGRESSO NAZIONALE SIGG

LA LONGEVITÀ DECLINATA AL FEMMINILE

Diabetes around the world in 2021



CONGRESSO NAZIONALE SIGG


LA LONGEVITÀ DECLINATA AL FEMMINILE

Diabetes prevalence in woman and men

Endocr Rev, Volume 37, 9 May 2016 Page 278-316 doi: 10.1210/er.2015-1137.

- **Biological risk factors**
- **Psychological risk factors**
- **Genetic predisposition**
- **Diabetes complications**
- **Antidiabetic Agent**

Are overweight or obese (BMI of 23.0 kg/m² or higher)

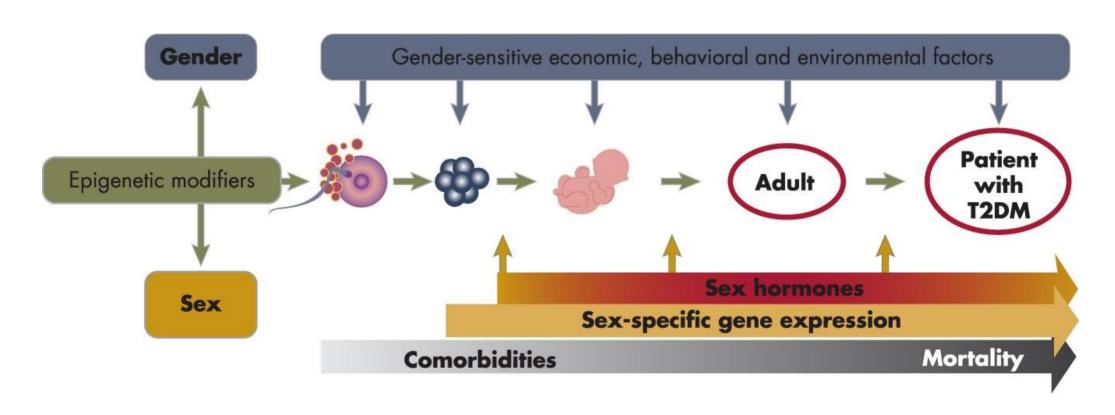
Lead an inactive lifestyle

Are 40 years old and above

Have a parent or sibling with diabetes

Have a history of gestational diabetes

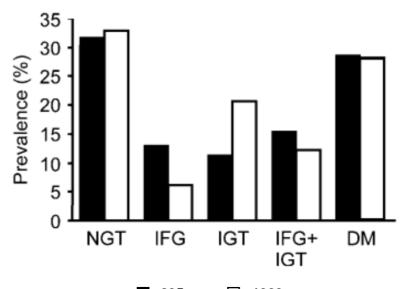
Have impaired glucose tolerance or impaired fasting glucose


Have abnormal blood cholesterol or lipid levels

Have high blood pressure

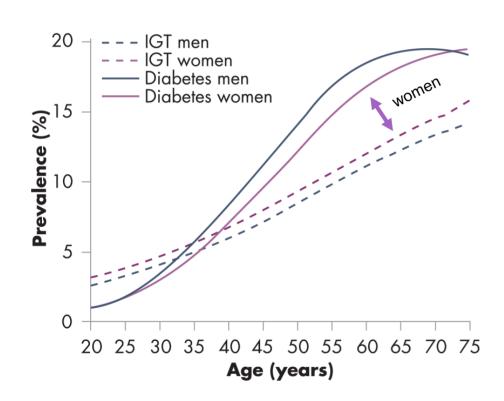
Lifelong impact and interaction between sex and gender on development and outcomes of Type 2 Diabetes Mellitus (T2D)

CONGRESSO NAZIONALE


LA LONGEVITÀ DECLINATA AL FEMMINILE

Sex and prevalence of impaired fasting glucose, impaired glucose tolerance and T2DM

- AusDiabStudy
- Inter99 Study
 - GENNID Study Group


Isolated IFG was more frequent in men (13.1 vs. 6.2%), whereas isolated IGT was more frequent in women (20.7 vs. 11.3%).

■ 835 men 🗌 1329 women

Prevalence of prediabetes and diabetes in women

Women show an acceleration of developing diabetes after menopause

The associations of menopausal age and reproductive life span (menopausal age minus menarcheal age) with diabetes risk: results from the **EPIC-INTERACT STUDY**

		HR (95% CI)							
	N total/cases	Crude	Model 1	Model 2	Model 3				
Menopausal age (years)									
<40	419/220	1.50 (1.22–1.85)	1.50 (1.22–1.85)	1.28 (1.00–1.64)	1.32 (1.04–1.69)				
40–44	887/424	1.19 (1.02–1.38)	1.18 (1.02–1.37)	1.08 (0.89-1.30)	1.09 (0.90-1.31)				
45–49	2,570/1,186	1.05 (0.95–1.17)	1.05 (0.95–1.17)	0.97 (0.86-1.10)	0.97 (0.86-1.10)				
50_54	3,333/1,554	Ref. (1.00)	Ref. (1.00)	Ref. (1.00)	Ref. (1.00)				
(≥55)	655/307	0.91 (0.77–1.08)	0.92 (0.77–1.08)	0.84 (0.69–1.02)	0.85 (0.70-1.03)				
Menopausal age (per SD decrease)	7,864/3,691	1.11 (1.06–1.16)	1.11 (1.06–1.16)	1.07 (1.01–1.13)	1.08 (1.02–1.14)				
Reproductive life span (years)									
Quartile 1 (<33)	1,982/959	1.11 (0.97–1.28)	1.11 (0.97–1.28)	1.16 (0.97–1.38)	1.17 (0.98–1.39)				
Quartile 2 (33–36)	2,364/1,077	0.94 (0.82–1.08)	0.94 (0.82–1.08)	1.00 (0.85–1.19)	1.00 (0.85-1.19)				
Quartile 3 (37–39)	1,979/897	0.91 (0.79–1.04)	0.91 (0.79–1.04)	0.97 (0.82–1.14)	0.96 (0.82-1.14)				
Quartile 4 (≥40)	1,443/710	Ref. (1.00)	Ref. (1.00)	Ref. (1.00)	Ref. (1.00)				
Reproductive life span (per SD decrease)	7,768/3,643	1.07 (1.02–1.12)	1.07 (1.02–1.12)	1.06 (1.00–1.12)	1.06 (1.01–1.12)				

TID (050/ CI)

CONGRESSO NAZIONALE

LA LONGEVITÀ DECLINATA AL FEMMINILE

Testosterone deficiency and T2DM in men

Endogenous Sex Hormones and the Development of Type 2 Diabetes in Older Men and Women: the RANCHO BERNARDO STUDY

		îvî	CII	Women		
Independent variables†	Covariates†	β	P	β	P	
Testosterone	Model 1	-0.37	0.001	-0.023	0.71	
	Model 2	-0.24	0.02	0.020	0.76	
	Model 3	-0.31	0.02	0.011	0.88	
Bioavailable testosterone	Model 1	-0.10	0.39	0.15	0.003	
	Model 2	-0.13	0.23	0.15	0.01	
	Model 3	-0.15	0.28	0.15	0.02	
Estradiol	Model 1	-0.13	0.24	0.035	0.61	
	Model 2	-0.08	0.47	0.054	0.49	
	Model 3	-0.05	0.64	0.025	0.77	
Bioavailable estradiol	Model 1	-0.03	0.79	0.14	0.01	
	Model 2	-0.07	0.49	0.15	0.02	
	Model 3	-0.05	0.66	0.14	0.055	

Testosterone excess and T2DM in women

Diabetologia

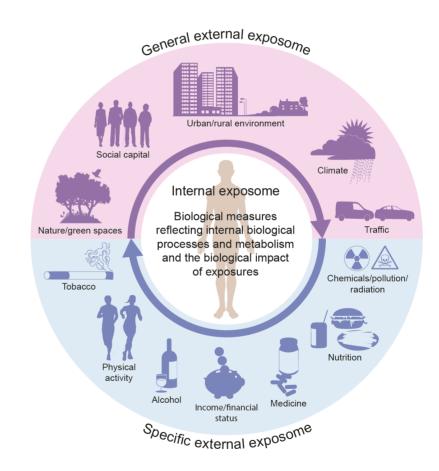
Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study

Analysis	Oestradio1 ^a		Free oestradiol b		Testosterone ^c		Free testosterone ^d	
	RR (95% CI)	p value for trend	RR (95% CI)	p value for trend	RR (95% CI)	p value for trend	RR (95% CI)	p value for trend
Multivariate	1.97 (1.28–3.04)	0.002	2.78 (1.89–4.10)	< 0.001	1.48 (1.01–2.17)	0.05	2.30 (1.60–3.30)	< 0.001
Multivariate (excluding first 3 years follow-up)	1.88 (1.09–3.25)	0.02	2.97 (1.82–4.85)	< 0.001	1.46 (0.92–2.34)	0.11	2.60 (1.63–4.14)	< 0.001
Multivariate +HDL + TG ^e	2.08 (0.93-4.65)	0.07	2.91 (1.47–5.73)	0.002	1.72 (0.92–3.20)	0.09	2.38 (1.14-4.97)	0.02
Multivariate + waist circumference	1.80 (1.15–2.83)	0.01	2.55 (1.72–3.78)	< 0.001	1.43 (0.93–2.20)	0.11	2.14 (1.48–3.10)	< 0.001
Multivariate + C-reactive protein	2.25 (1.39–3.66)	0.001	2.70 (1.78-4.10)	< 0.001	1.33 (0.88–2.02)	0.18	1.99 (1.31–3.03)	0.001
Multivariate (among those with HbA _{1c} <6%)	2.00 (1.18–3.36)	0.009	3.07 (1.85–5.09)	< 0.001	1.39 (0.86–2.24)	0.17	2.40 (1.49–3.88)	< 0.001

Results

In PostMenopausal women, higher plasma levels of oestradiol and testosterone were strongly and prospectively related to increased risk of developing type 2 diabetes.

Gestational Diabetes and T2DM


Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus

Conclusions

Gestational diabetes mellitus predicted markedly increased rates of type 2 diabetes.

		pregnancy with GDM, R (95% CI)	Time since last pregnancy with
	No GDM	GDM	GDM, HR (95% CI)
Person-years	462,042	10,958	-
Participants, n	45,357	1,172	-
Model 1: model with no time since GDM interaction	1 (ref)	2.50 (2.15-2.91)	-
Model 2: model with time since GDM interaction term† GDM effect†	1 (ref)	5.07 (3.36–7.65)	0.76 (0.66–0.88)
Model 3: model stratified by time since last pregnancy with GDM, years			
6–15	1 (ref)	3.87 (2.60-5.75)	_
16–25	1 (ref)	3.50 (2.79-4.40)	_
26–35	1 (ref)	1.95 (1.46-2.61)	_
>35	1 (ref)	1.62 (1.12–2.33)	_

- **Biological risk factors**
- **Psychological risk factors**
- **Genetic predisposition**
- **Diabetes complications**
- **Antidiabetic Agent**

CONGRESSO NAZIONALE SIGG

LA LONGEVITÀ DECLINATA AL FEMMINILE

Work stress and T2DM

Work Stress, Obesity and the Risk of Type 2 Diabetes: Gender-Specific Bidirectional Effect in the Whitehall II Study

Among women, work stress was associated with higher risk of T2DM in the obese (HR 2.01: 1.06; 3.92) but not in the nonobese ($P_{INTERACTION} = 0.005$)

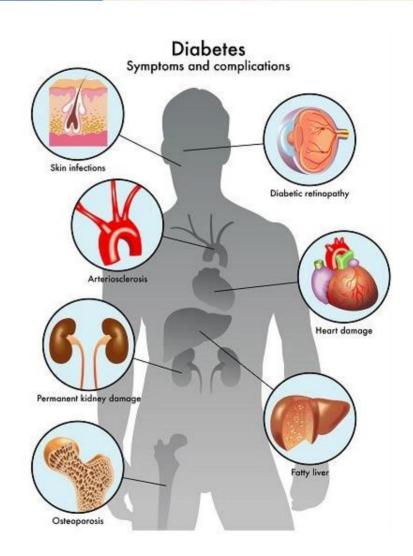
	All men	Nonobese mer	n (BMI <30 kg/m²)	Obese men (Obese men (BMI ≥30 kg/m²)			
Cases/total	HR (95% CI)	Cases/total	HR (95% CI)	Cases/total	HR (95% CI)	P for interaction ^a		
389/3,689	0.80 (0.63; 1.02)	310/3,429	0.70 (0.53; 0.93)	79/260	1.05 (0.63; 1.75)	0.17		
All	women	Nonobese wom	en (BMI <30 kg/m²)	Obese womer	Obese women (BMI ≥30 kg/m²)			
Cases/total	HR (95% CI)	Cases/total	HR (95% CI)	Cases/total	Cases/total HR (95% CI)			
151/1,449	1.37 (0.98; 1.92)	104/1,248	1.18 (0.63; 2.10)	47/201	2.01 (1.06; 3.82)	0.005		

Obesity (Silver Spring). Volume 20, February 2012, Pages 428-33. doi: 10.1038/oby.2011.95.

- **Biological risk factors**
- **Psychological risk factors**
- **Genetic predisposition**
- **Diabetes complications**
- **Antidiabetic Agent**

GENETIC PREDISPOSITION

Sexual dimorphism in genetic predisposition

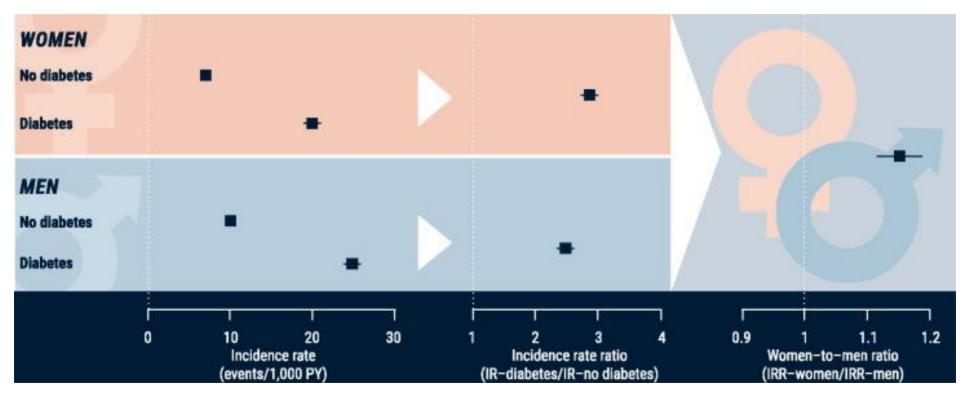

Fetal sex influences gene expression and produces functional differences in the human placentas that increase the susceptibility to developing type 2 diabetes in the offspring.

							Sex-combine	ed		Women			Men		Sex diff.
SNP	Trait	CH	Locus	EA*	EAF	β	Р	N	β	Р	N	β	Р	N	P†
Loci achieving	g genome-wid	des	significance	n Eu	ropean	-ancestr	y meta-analy	'ses							
rs10925060		1	OR2W5-	Т	0.03	0.017	2.2×10^{-5}	140,515	0.002	6.8×10^{-1}	85,186	0.045	9.1×10^{-13}	55,522	1.7×10^{-8}
		-	NLRP3												
rs10929925	HIP	2	SOX11	С	0.55	0.020	4.5×10^{-8}	207,648	0.021	9.0×10^{-6}	115,428	0.018	3.2×10^{-4}	92,499	6.1×10^{-1}
rs2124969	WCadjBMI	2	ITGB6	С	0.42	0.020	7.1×10^{-9}	231,284	0.016	3.5×10^{-4}	127,437	0.025	2.3×10^{-7}	104,039	1.4×10^{-1}
rs17472426	WCadjBMI	5	CCNJL	Т	0.92	0.014	3.1×10^{-2}	217,564	-0.014	1.0×10^{-1}	119,804	0.052	4.3×10^{-8}	97,954	3.9×10^{-8}
rs7739232	HIPadjBMI	6	KLHL31	Α	0.07	0.037	5.4×10^{-5}	131,877	0.063	1.0×10^{-8}		-0.004	7.5×10^{-1}	51,589	2.9×10^{-5}
rs13241538	HIPadjBMI	7	KLF14	С	0.48	0.017	1.6×10^{-6}	210,935	0.033	9.9×10^{-14}	117,210		5.0×10^{-1}	93,911	2.0×10^{-9}
rs7044106	HIPadjBMI	9	C5	С	0.24	0.023	4.1×10^{-5}	143,412	0.039	5.7×10 ⁻⁹	86,733		6.9×10^{-1}	56,865	1.3×10 ⁻⁵
rs11607976	HIP	11	. MYEOV	С	0.70	0.022	4.2×10^{-8}	212,815	0.019	1.9×10^{-4}	118,391	0.024	7.7×10^{-6}	94,701	4.4×10^{-1}
rs1784203	WCadjBMI	11	. <i>KIAA17</i> 3	A	0.01	0.031	1.3×10^{-8}	63,892	0.000	9.9×10^{-1}	35,539	0.075	1.0×10^{-19}	28,353	1.2×10^{-1}
rs1394461	WHR	11		С	0.25	0.017	4.7×10^{-4}	144,349	0.035	3.6×10^{-8}	,	-0.011	1.6×10^{-1}	57,094	1.1×10^{-6}
rs319564	WHR	13		С	0.45	0.014	3.4×10^{-5}	212,137	0.003	5.3E-01	117,970	0.027	1.6×10^{-8}	94,350	6.0×10^{-5}
rs2047937	WCadjBMI	16		С	0.50	0.019	4.7×10 ⁻⁸	231,009	0.022	5.5×10^{-7}	127,288	0.014	3.6×10^{-3}	103,914	2.0×10^{-1}
rs2034088	HIPadjBMI	1	7 <i>VPS</i> 53	Т	0.53	0.021	4.8×10^{-9}	210,737	0.028	9.6×10^{-10}		0.014	6.5×10^{-3}	93,781	2.5×10^{-2}
rs1053593	HIPadjBMI	22			0.65	0.021	3.9×10^{-8}	202,070	0.029	1.8×10^{-9}	114,347	0.011	5.1×10^{-2}	87,908	6.2×10^{-3}
Loci achieving		des					analyses								_
rs1664789	WCadjBMI	5	ARL15	С	0.41	0.014		244,110	0.005	2.8×10^{-1}	133,052	0.026	3.6×10^{-8}	109,025	4.4×10^{-4}
rs722585	HIPadjBMI	6	GMDS	G	0.68	0.015	2.1×10^{-4}	,	-0.001	8.8×10^{-1}	113,965	0.032	9.2×10 ⁻⁹	89,831	4.3×10 ⁻⁶
rs1144	WCadjBMI	7	SRPK2	С	0.34	0.019	3.1×10^{-8}	239,342	0.020	1.2×10^{-5}	131,398	0.018	4.1×10^{-4}	105,911	7.8×10^{-1}
rs2398893	WHR	9	PTPDC1	Α	0.71	0.020	4.0×10 ⁻⁸	226,572	0.019	5.1×10^{-5}	124,577	0.019	2.7×10^{-4}	99,968	9.5×10^{-1}
rs4985155‡	HIP	16	PDXDC1	Α	0.66	0.018	4.5×10^{-7}	227,296	0.011	1.6×10^{-2}	125,048	0.029	9.7×10^{-9}	100,313	6.3×10^{-3}
		_													

Results:

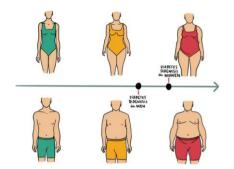
Sex-specific differences were found in genetic loci, which are involved in regulatory functions of adipose tissue and insulin biology

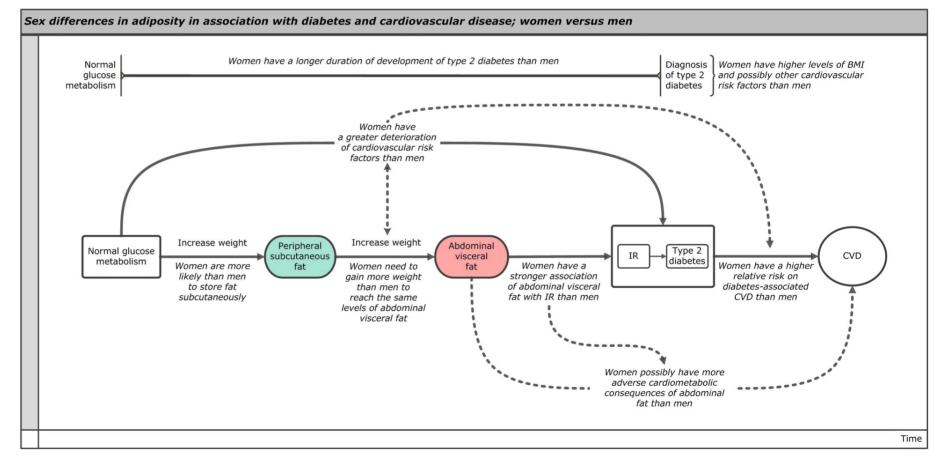
- **Biological risk factors**
- **Psychological risk factors**
- **Genetic predisposition**
- **Diabetes complications**
- **Antidiabetic Agent**

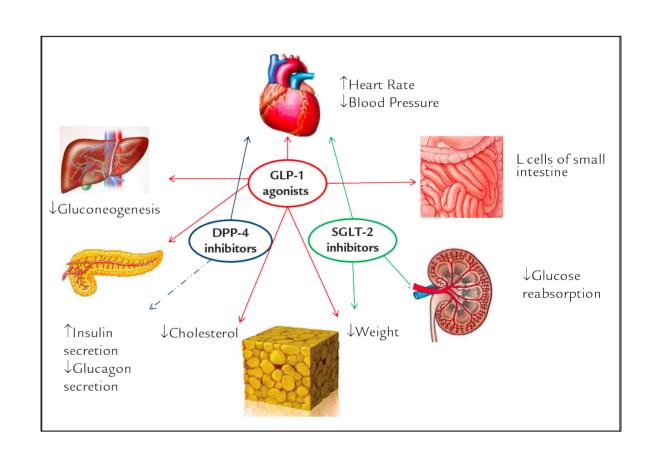


Women has major risk to develop cardiovascular diseases

CONGRESSO NAZIONALE SIG


LA LONGEVITÀ DECLINATA AL FEMMINILE




Biology of Sex Differences

Sex differences in the risk of vascular disease associated with diabetes

- **Biological risk factors**
- **Psychological risk factors**
- **Genetic predisposition**
- **Diabetes complications**
- **Antidiabetic Agent**

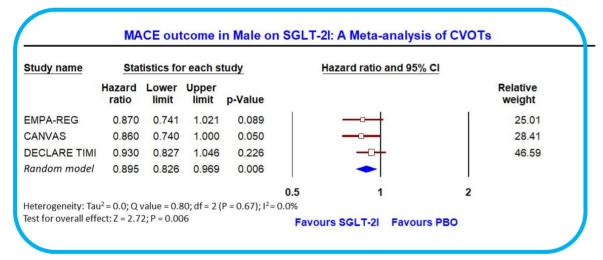
CONGRESSO NAZIONALE

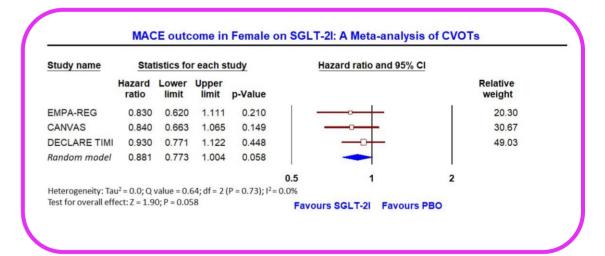
LA LONGEVITÀ DECLINATA AL FEMMINILE

Long-Term Effectiveness of Liraglutide for Weight Management and Glycemic Control in Type 2 Diabetes

	В	Beta	T	<i>p</i> -Value
BMI	0.387	0.380	2.533	0.016
Female gender	5.086	0.365	2.420	0.020
* Female gender	6.459	0.464	2.975	0.005

Conclusions:


Prolonging treatment with Liraglutide can lead to durable benefits in relation to weight and glycemic control, with a greater impact on women.


Int J Environ Res Public Health., Volume 17, 27 Dec 2019, doi: 10.3390/ijerph17010207.

Gender difference in Cardiovascular Outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in Type 2 Diabetes:

A Systematic Review and Meta-analysis of Cardio-Vascular Outcome Trials

Conclusions

- Sex is a fundamental biological factor, which plays a key role in regulation of homeostasis in health and causes vulnerability to cardiometabolic risk factors, as well as manifestation, clinical picture, and management of T2DM;
- The care of diabetic pregnancy demands special attention, because this vulnerable phase programs health of offspring even in a sex-specific way;
- Psychosocial factors also impact development and progression of diabetes and coping in a gender-dimorphic way.

Modern personalized treatment has to consider differences in biological factors, like genetic predisposition, sex hormones, and neurohumoral pathways, as well as behavioral and environmental differences between men and women