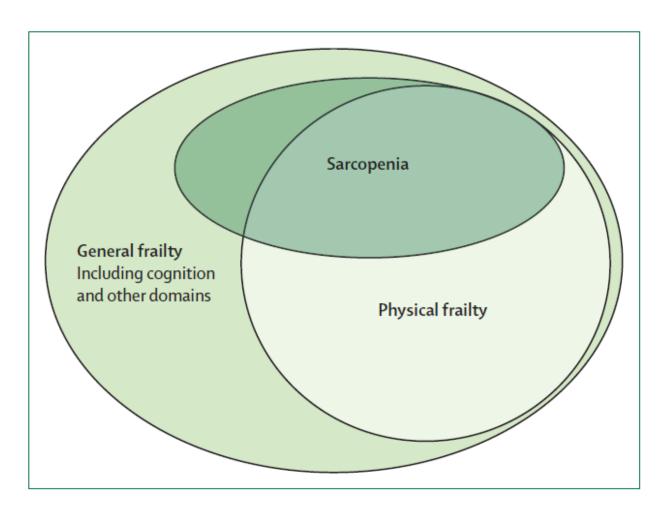
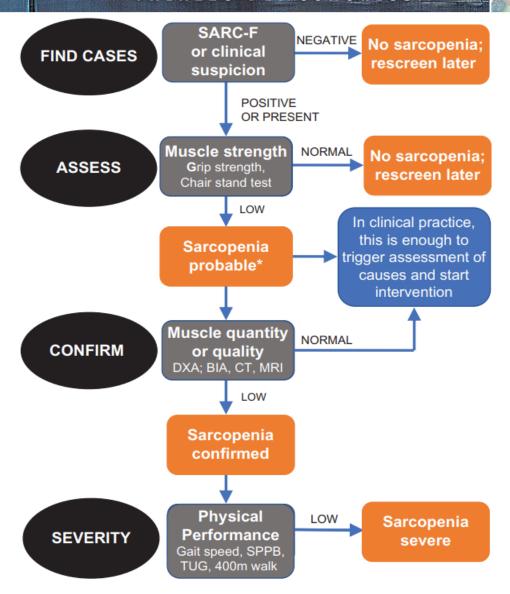


Funzionalità renale nel paziente sarcopenico: come valutarla? Quali scale?

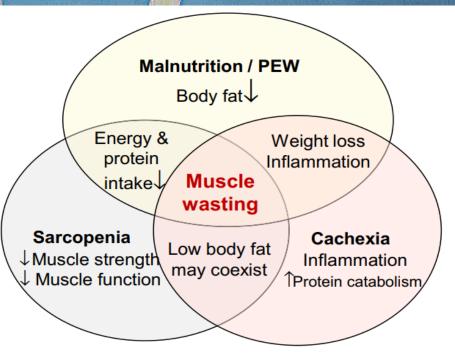




Ritorno al futuro

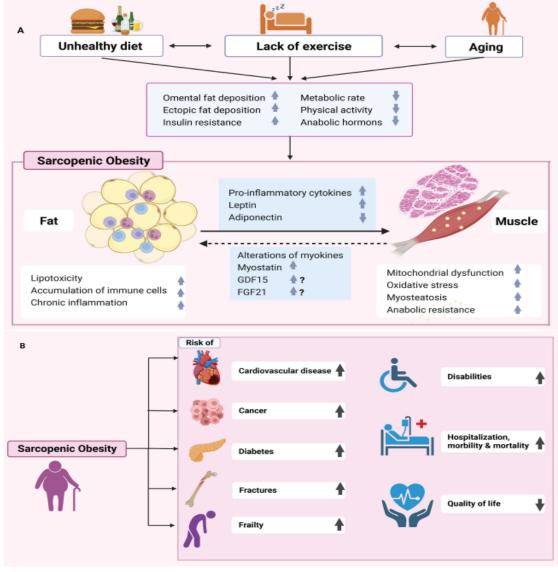
FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Loss of muscle mass and strenght



Ritorno al futuro

FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI



Common Etiological Factors

- Inflammation
- Increased protein catabolism
- Insufficient energy and nutrient intake
- Aging
- Comorbidities
- Decreased appetite
- Sedentarism
- Nutrient losses into the dialysate
- Resistance to anabolic hormones

Common Outcome

- Low quality of life
- Increased falls/fractures
- Increased hospitalization rate
- Increased mortality

Wei et al. Front. Endocrinology, 2023

Muscle wasting in CKD

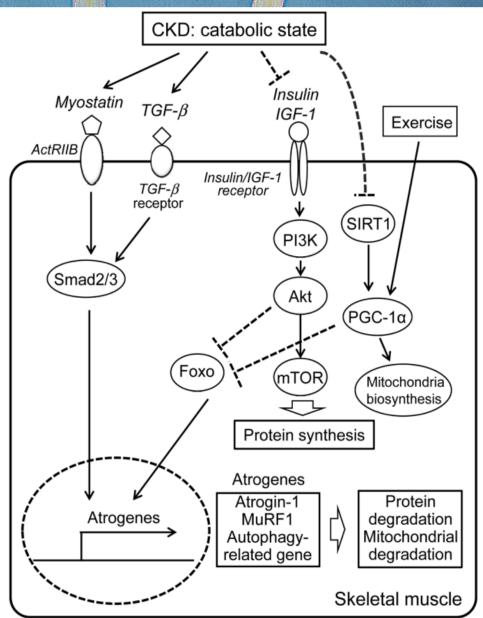
• Cachexia/PEW: 19-50%

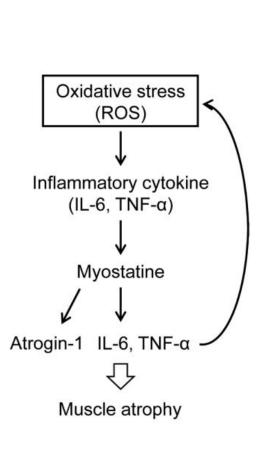
• Sarcopenia: 4-42%

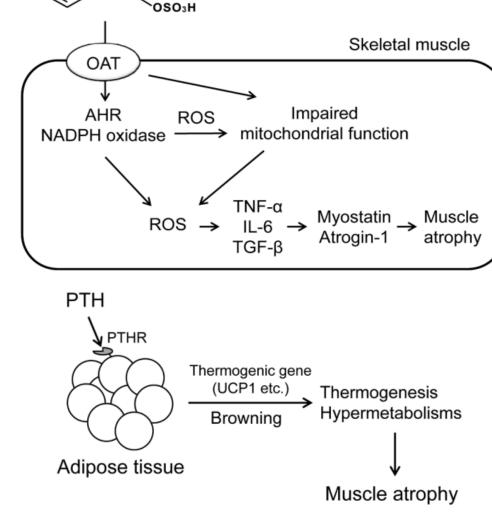
• Sarcopenic Obesity: 2-23%

Von Haehling et al. J Cachexia Sarcopenia Muscle, 2016 Chatzipetrou et al. Calcif Tissue Internat., 2022 Tomborelli Bellafronte et al. Med Princ Pract., 2021

	CKD-related sarcopenia	Ageing-related sarcopenia	
Muscle protein degradation	Increased	No change	
Muscle protein synthesis	Decreased	Decreased	
Resting energy expenditure	Increased/unchanged	Unchanged	
Inflammation	Increased	Increased or unchanged	
Insulin resistance	esistance Present Present		
Body fat	Unchanged, increased or decreased	Normally increased	
Muscle fiber change	Atrophy in type I and II fibers	Preferential loss of type II fibers	

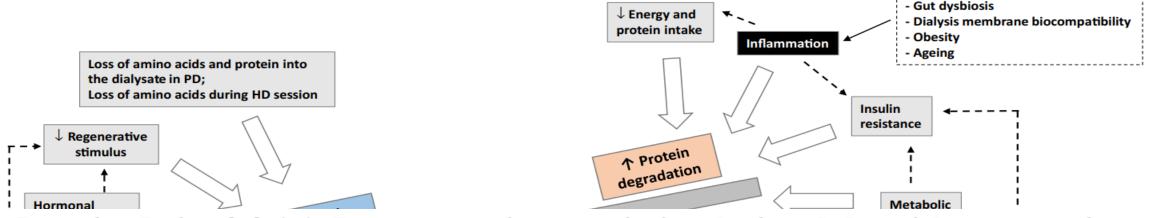

Sabatino et al. Journal of Nephrology, 2022



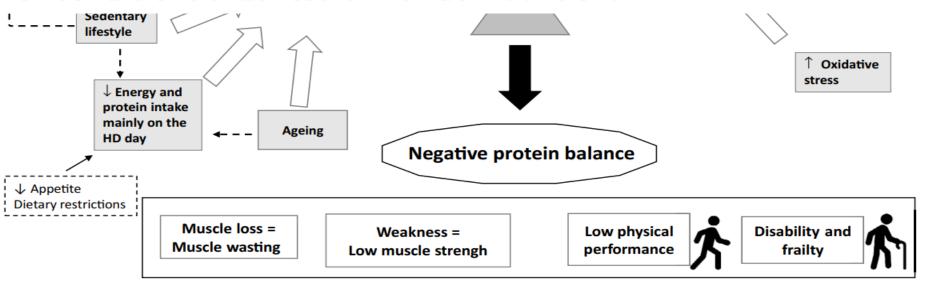

Ritorno al futuro

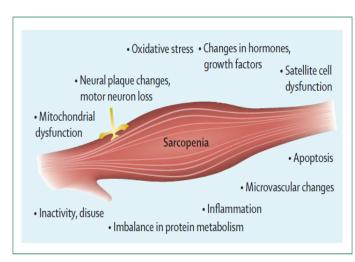
FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Indoxyl sulfate



Watanabe et al. Biol. Pharm. Bull., 2019




Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023

FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Practice Point 3.3.1.1: Do not restrict protein intake in adults with sarcopenia, cachexia, or conditions that result in undernutrition.

Sabatino et al. Journal of Nephrology, 2022

Cruz-Jentoft et al. The Lancet, 2019

Ritorno al futuro

FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Child/adolescent

- · Growth
- · Nutrition
- · Weight/BSA-based drug dosing
- · Neurocognitive development
 - · Supporting education
 - · Transition to adult care
- Holistic approach to care for the whole family unit

Sex

- Menopause
- Contraception
- · Differential drug effects
- Differing epidemiology of risk factors and complications

Older adults

- Multidimensionality of chronic conditions/ multimorbidity
- · Frailty (including sarcopenia)
 - · Cognitive function
 - Polypharmacy
 - · Prioritization
 - · End-of-life care

Pregnancy/lactation

- Drug pharmacokinetics and pharmacodynamics
 - Drug teratogenicity
- Risk of CKD progression
- Increased risk of pregnancy complications, preterm birth and small for gestational age babies


 Footblite

 Footblite
 - Fertility

Gender

- Gender identity
- Gender roles
- Gender relations
- Institutionalized gender

KDIGO, 2023 (under review)

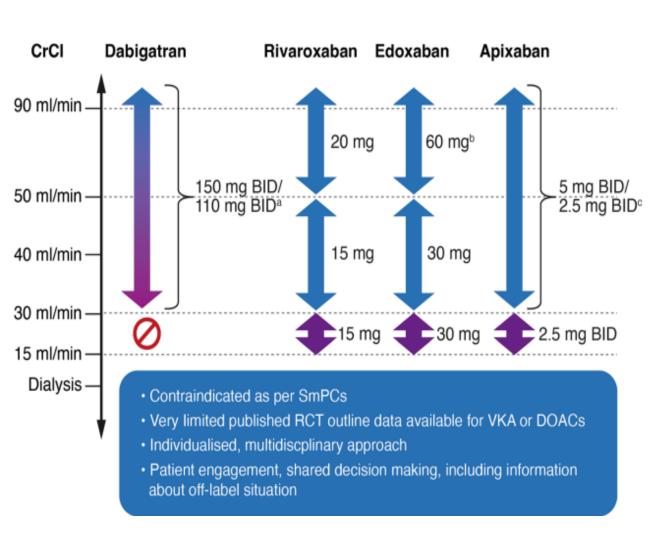
Markers of kidney damage (one	Albuminuria (AER ≥30 mg/g (≥3 mg/mmol))
or more)	Urine sediment abnormalities
	Electrolyte and other abnormalities due to tubular disorders
	Abnormalities detected by histology
	Structural abnormalities detected by imaging
	History of kidney transplantation
Decreased GFR	GFR <60 ml/min per 1.73 m ² (GFR categories G3a-G5)

Table 1. Criteria for chronic kidney disease (CKD) (either of the following present for >3 months).

AER, albumin excretion rate; GFR, glomerular filtration rate

GFR category	GFR (ml/min per 1.73 m ²)	Terms
Gl	≥90	Normal or high
G2	60-89	Mildly decreased*
G3a	45-59	Mildly to moderately decreased
G3b	30-44	Moderately to severely decreased
G4	15-29	Severely decreased
G5	<15	Kidney failure

Table 3. Glomerular filtration rate (GFR) categories in chronic kidney disease (CKD). *Relative to young adult level. In the absence of evidence of kidney damage, neither G1 nor G2 fulfill the criteria for CKD.


0,8-1 mL/min/year after age 30 years

Ritorno al futuro

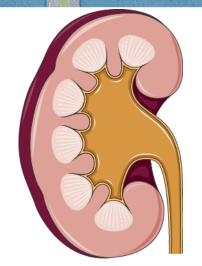
FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Medication	> 50mL/min	30-50mL/min		CAPD ²	Comments		
Amoxicillin	250-500mg TID	250-500mg TID	250-500mg BID	250-500mg daily to BID	250-500mg BID ³	250-500mg BID	Higher single doses (eg. 2 g po 1 hr prior to dental surgery) are fine for all CKD stages
Amoxicillin/ Clavulanate (Clavulin®)	250-500 mg TID or 875 mg BID	250-500 mg TID or 875 mg BID	250-500 mg BID	250-500mg daily to BID	250-500 mg BID	250-500 mg BID	
Azithromycin	250-500mg daily		No o	dosage adjustmer	nts		
Cefixime	400mg daily	400mg daily	200 mg daily	200 mg daily	200 mg daily	200 mg daily	Give post HD on dialysis days
Cefuroxime axetil	250-500mg BID to TID	250-500mg BID to TID	250-500 mg BID	250-500 mg BID	250-500 mg BID	250-500 mg BID	
Cephalexin	250-500mg QID	250-500mg TID to QID	250-500mg BID to TID	250-500mg daily to BID	250-500mg BID	250-500mg BID	
Ciprofloxacin	250-750mg BID	250-750mg BID	500-750mg daily	250-500mg daily	500-750mg daily	500-750mg daily	May prolong QTc Space doses apart from Ca**, Iron and Al*** by at least 3 hours Give post HD on dialysis days
Clarithromycin/ Clarithromycin XL	250-500 mg BID (1g daily XL)	250-500 mg BID (1g daily XL)	500mg daily	250-500mg daily	250-500mg daily	250-500mg daily	May prolong QTc Use regular release format with eGFR < 30 mL/min (not XL)
Clindamycin	300 - 600mg TID	No dosage adjustments					
Cloxacillin	500 - 1000mg QID	No dosage adjustments					

Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

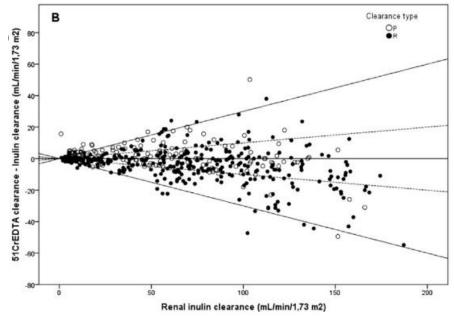
Afferent

arteriole


tubule

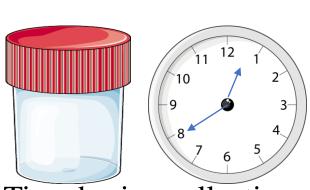
Efferent

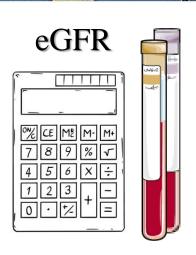
Normal endothelium


Basement membrane

Podocytes

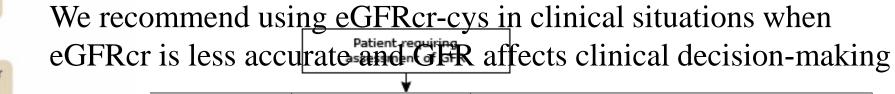
True GFR cannot be measured directly in humans


$$CL_{x} = \frac{U_{x} \times \dot{V}}{P_{x}}$$



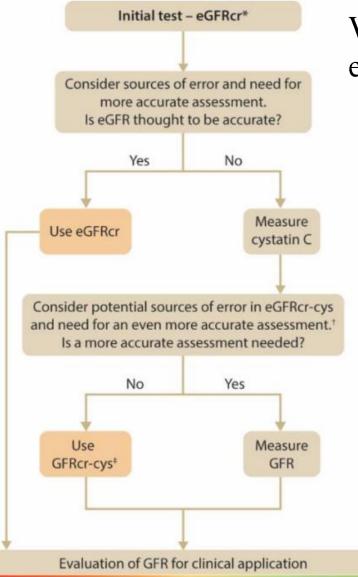
Multiple blood samples
Continuous intravenous
infusion

51Cr-EDTA
Iothalamate
Iohexol


Timed urine collection

Advise adults not to eat any meat in the 12 hours before having a blood test for eGFRcreatinine. Avoid delaying the despatch of blood samples to ensure that they are received and processed by the laboratory within 12 hours of venepuncture. [2008]

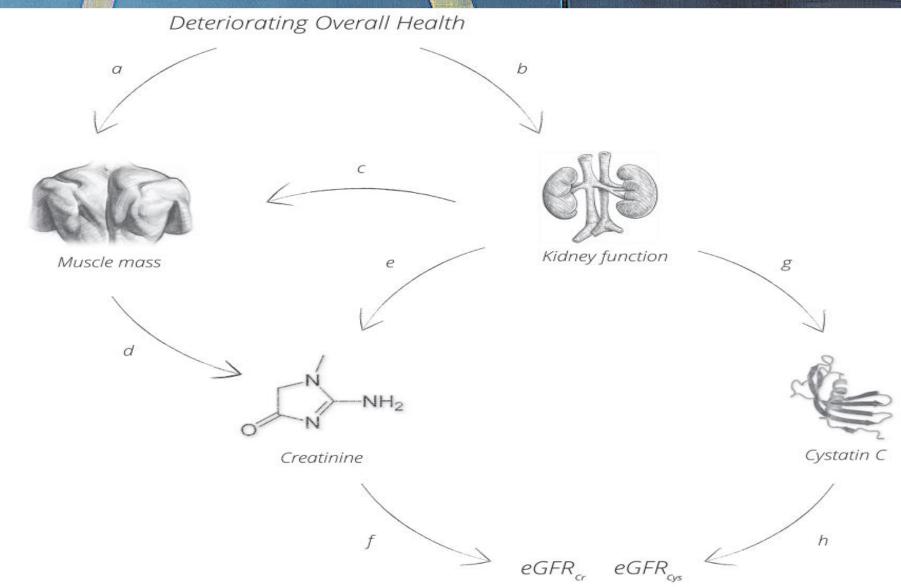
120



Specific clinical	Cause of decreased	Comments on GFR evaluation
condition	accuracy	Comments on OTA Cyanacton
Class III obesity	nonGFR determinants of SCr	aCED an area demonstrated to be accept accounts
$(BMI>40 \text{ kg/m}^2)^{\dagger}$	and SCys	eGFRcr-cys demonstrated to be most accurate
Muscle wasting	CED 1-titfSC	Suggest eGFRcys in those without other comorbid illness
diseases	nonGFR determinants of SCr	eGFRcr-cys in those with other comorbid illness
-		

Rationale for using cystatin C containing equations for CKD staging

The rationale for using cystatin C versus SCr, or a combination of both, in eGFR equations is that creatinine, which is directly linked to muscle mass, may be misleading at extremes of body habitus, or in specific conditions (spinal cord injuries, sarcopenia), and that cystatin C is impacted by different variables (steroid use, thyroid disease, cancer). Thus, since neither is a perfect marker to use for estimating clearance, the combination of the 2 compounds gives more accurate estimates of GFR when compared to measured values.


Very low levels of SCr often represent poor health status, such as frailty or sarcopenia, which limit the production of SCr. This biological feature of SCr (i.e., relation to muscle mass) has limited its prognostic utility, and results in reducing the risk associations for eGFRcr 45-60 ml/min per 1.73 m² and elevating risks for eGFRcr >110 ml/min per 1.73 m². These limitations are not observed when risk is estimated using eGFRcr-cys or cystatin C-based eGFR (eGFRcys) (Figure 6).

KDIGO, 2023 (under review)

Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Groothof et al. J Cachexia Sarcopenia Muscle., 2022

Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

	Author - year	Country - subjects	N, Age (mean ± SD), Gender (%), BMI (mean ± SD)	Kidney function	Description
U/C	de Mutsert et al 2009 ⁷	The Netherlands - End-stage renal disease patients	1601, 59 ± 15, Men: 978 (61.1), Women: 623 (38.9), BMI 24.7 ± 4.1	Severe PEW (81) versus Moderate PEW (367) versus Normal nutrition (1153); rGFR 2.3 \pm 2.2 versus 3.2 \pm 2.9 versus 4.1 \pm 3.0, $P < 0.001$	Severe PEW at baseline, as assessed with the 7-point SGA, was independently associated with a 2-fold increased mortality risk in 7 years of follow-up. In time-dependent analyses, this association was even stronger, 5-fold, indicating that PEW was associated with a remarkably high risk of short-term mortality.
nd	von Haehling et al 2016 ³	Europe, USA, Japan - Estimates based on data	No detailed data	Estimates for the prevalence of cachexia in CKD; Prevalence in population 0.1%, Patients at risk 50%, Prevalence in patients at risk 50%, Patients in Europe 190 000, the USA 80 000, Japan 30 000,	Given the high prevalence and very high mortality associated with cachexia, advances are urgently needed for patients worldwide.
C	Dai et al 2017 ⁸	Sweden - CKD patients	1031	1-year mortality 20% Well-nourished (711) versus Malnourished (according to SGA, PEW _{SGA} , 320); Creatinine-based eGFR 6.1 (0–68.8) versus 5.6 (0–11.4), $P < 0.001$, Cr (µmol/L) 664 (95–1017) versus 627 (403–917), $P = 0.79$	SGA, a valid assessor of nutritional status, is an independent predictor of all-cause mortality both in CKD non-dialysis and dialysis patients that outperforms non-composite nutritional markers as prognosticator.
C	Hyun et al 2017 ⁹	Korea - Predialysis CKD patients	1834, 53.9 ± 12.2, Men: 1108 (60.4), Women: 726 (39.6)	Creatinine-based eGFR Stage 1 (≥90) (231) versus Stage 2 (60–89) (339) versus Stage 3a (45–59) (327) versus Stage 3b (30–44) (405) versus Stage 4 (15–29) (418) versus Stage 5 (<15) (114); PEW 2.2 versus 4.4 versus 8.3 versus 6.2 versus 15.6 versus 24.6, <i>P</i> < 0.001	PEW increases with advanced CKD stage. PEW is independently associated with renal function, low total CO ₂ , low physical activity, comorbid diabetes, and increased hs-CRP in adults with predialysis CKD.
C	Pérez-Torres et al 2017 ¹⁰	Spain - Patients attending the advanced CKD outpatient clinic	186, Men: 101 (54.3), Women: 85 (45.7) BMI 27.6 ± 5.1	Total versus Men versus Women; Cr 3.7 \pm 1.1 versus 3.8 \pm 1.3 versus 3.6 \pm 0.9, Not significant, Cr clearance 17 \pm 4 versus 18 \pm 4 versus 17 \pm 4, Not significant PEW (%) 56 (30) versus 23 (23) versus 33 (39),	appropriate to adapt new diagnostic elements to PEW
nd	Koppe et al 2019 ⁶	Searched the publication in MEDLINE from February 2008 to September 2018	No detailed data	P < 0.001 PEW prevalence increases when renal function declines, that is, from <2% in CKD stages 1–2 to 11–54% in CKD stages 3–5	The recent understanding of cachexia physiopathology during CKD progression suggests that PEW and cachexia are closely related and that PEW corresponds the initial state of a continuous process that leads to cachexia, implicating the same metabolic pathways as in other chronic diseases.
U/nd	McKeavency et al 2021 ⁴	United Kingdom - Adult haemodialysis patients	106, 67.62 ± 13.18, Men: 76 (71.7), Women: 30 (28.3) BMI, median (IQR) 28.0 (23.0–31.3)	Cachectic versus Not cachectic; URR, median (IQR) 0.75 (0.72–0.81) versus 0.73 (0.68–0.77), $P < 0.001$, eGFR, median (IQR) 6.8 (5.5–6.8) versus 8.6 (6.85–10.7), Not significant	This is the first study to apply the defined characteristics of cachexia to a representative sample of patients receiving HD. Further, more extensive studies are required to establish a phenotype of cachexia in advanced CKD.

BMI, body mass index; CKD, chronic kidney disease; Cr, creatinine; eGFR, estimated glomerular filtration rate; HD, haemodialysis; hs-CRP, high sensitivity C-reactive protein; IQR, interquartile range; PEW, protein-energy wasting; rGFR, residual glomerular filtration rate corrected for body surface area; SD, standard deviation; SGA, subjective global assessment; URR, urea reduction ratio.

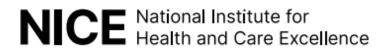
Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

	Author, year	Country - subjects	N, Age (mean ± SD), Gender (%), BMI (mean ± SD)	Kidney function	Description
U/C	Isoyama et al 2014 ¹²	Sweden - Incident dialysis patients	330, 53 ± 13, Men: 203 (61.5), Women: 127 (38.5)	Muscle mass; Appropriate versus Low; PEW 19 versus 43, $P < 0.001$, Serum creatinine 8.1 (5.3–11.7) versus 6.9 (4.2–10.4), $P < 0.001$ GFR calculated by renal urea and creatinine clearances 7 (4–9) versus 6 (4–10), $P = 0.80$ Muscle strength; Appropriate versus Low; PEW 16 versus 52, $P < 0.001$, Serum creatinine 8.3 (5.6–11.7) versus 6.46 (4.17–10.0), $P < 0.001$, GFR calculated by renal urea and creatinine clearances 7 (5–9) versus 6 (4–9), $P = 0.27$	Low muscle strength was more strongly associated with aging, protein-energy wasting, physical inactivity, inflammation, and mortality than low muscle mass.
C	Hyun et al 2016 ¹⁴	Korea - General population	10 734, 49.5 ± 16.1, Men: 4691(43.7), Women: 6043 (56.3), BMI 22.21 ± 1.72	Normal (6325) versus Sarcopenia alone (1535) versus Obesity alone (16.0) versus Sarcopenic obesity (1152); Creatinine-based eGFR 97.0 \pm 15.5 versus 98.7 \pm 17.7 versus 94.7 \pm 16.6 versus 94.1 \pm 19.4, $P < 0.001$, CKD (%) 2.3 versus 2.9 versus 3.4 versus 6.5, $P < 0.001$	Sarcopenic obesity was associated with CKD and high eGFR. Sarcopenia alone was associated with high eGFR. BMI, which was used as an operational definition for classifying both obesity and underweight, has long been recognized as an important indicator of nutrition and chronic debilitating disease.
C	Yang et al 2016 ¹³	China - Type 2 diabetes patients	1555	Without diabetes; Non-sarcopenia (420) versus Sarcopenia (342); Creatinine-based eGFR (mL/min) 111.49 \pm 18.47 versus 100.95 \pm 17.61, $P < 0.001$, Cr (μ mol/L) 64.98 \pm 12.86 versus 71.35 \pm 15.15, $P < 0.001$ Diabetes; Non-sarcopenia (585) versus Sarcopenia (208), Creatinine-based eGFR (mL/min) 122.75 \pm 29.20 versus 107.42 \pm 30.95, $P < 0.001$ Cr (μ mol/L) 61.57 \pm 15.41 versus 77.31 \pm 62.17,	Sarcopenia is associated with declining renal function, which in turn leads to lower eGFR and higher UACR in the non-diabetic population and type 2 diabetics.
C	Fukuda et al 2020 ¹⁵	Japan - Type 2 diabetes patients	745, 64.6 ± 11.8, Men: 399 (53.6), Women: 346 (46.4)	P < 0.001 Non-sarcopenic low A/G (205) versus Sarcopenic low A/G (168) versus Non-sarcopenic high A/G (287) versus Sarcopenic obesity (85); Creatinine-based eGFR 71.5 \pm 20.6 versus 76.5 \pm 29.3 versus 67.9 \pm 22.1 versus 68.9 \pm 24.6, $P = 0.003$, Annual decline rate in creatinine-based eGFR, -1.3 ± 3.1 versus -2.4 ± 4.0 versus -1.9 ± 3.7 versus -4.0 ± 4.8 , $P < 0.001$	Sarcopenic obesity evaluated through a whole-body DEXA scan is significantly associated with decline in renal function in Japanese people with type 2 diabetes, even after adjustment for established risk factors of decline in renal function including eGFR, ACR and systolic blood pressure.
C	Moreno-Gonzalez et al 2020 ¹⁶	Austria, Germany, Israel, Italy, the Netherlands, Poland, Spain - Commu- nity-dwelling older adults	1420, 79.5 (77.0–83.0), Men: 616 (43.4%), Women: 804 (56.6%), BMI 27.0 (24.4–30.0)	Sarcopenia was more prevalent in participants with more advanced stages of CKD according to BIS (9.6% in stages 1 and 2 and 13.9% in stages 3a, 3b and 4, $P = 0.042$), and also	Participants within poorer eGFR categories, irrespective of the equation used for its calculation, have a higher prevalence of sarcopenia and are more often severely sarcopenic. (Continues)

Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

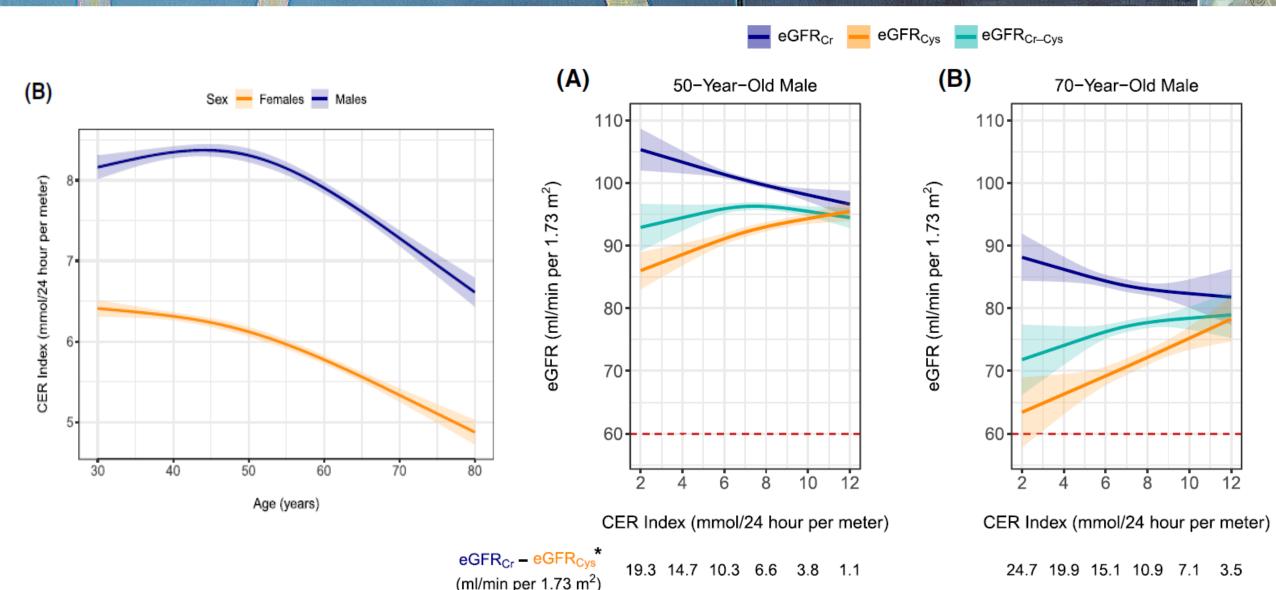
	Author, year	Country - subjects	N, Age (mean ± SD), Gender (%), BMI (mean ± SD)	Kidney function	Description
C/Cys	Kusunoki et al 2021 ²⁰	Japan - Healthy commu- nity-dwelling elderly individuals	949, 73.2 ± 5.9, Men: 302 (31.8), Women: 647 (68.2), BMI 22.7 ± 2.9	according to CKD-EPI (9.8% versus. 14.2%, $P=0.042$). Men: Normal versus Sarcopenia, Cre 0.87 ± 0.17 versus 0.90 ± 0.19 , $P=0.374$, eGFRcre 68.4 ± 13.6 versus 65.0 ± 13.2 , $P=0.230$, eGFRcys 72.5 ± 15.5 versus 62.7 ± 16.9 , $P=0.003$, eGFRcys/eGFRcre 1.07 ± 0.17 versus 0.96 ± 0.14 , $P=0.002$ Women: Normal versus Sarcopenia, Cre 0.65 ± 0.13 versus 0.66 ± 0.14 , $P=0.670$, eGFRcre 69.5 ± 13.8 versus 67.6 ± 14.1 , $P=0.339$,	Low eGFRcys (CKDcys) was more frequent in participants with sarcopenia than in normal participants. In the multivariate logistic regression analysis adjusted for complications (hypertension, diabetes, dyslipidaemia, liver disease, and heart disease), CKDcys was clearly related to sarcopenia based on AWGS 2019 while CKDcre was not.
C	Soraci et al 2021 ¹⁷	Italy - Elderly patients ad- mitted to hospitals	504, Survived; 338, 79.6 ± 6.59, Men: 155 (45.9%), Women: 183 (54.1%), BMI 27.0 ± 5.02 Died; 166, 82.8 ± 6.23, Men: 86 (51.8%), Women: 80 (48.2%),	eGFRcys 75.8 \pm 15.1 versus 69.1 \pm 17.1, $P < 0.001$, eGFRcys/eGFRcre 1.10 \pm 0.17 versus 1.02 \pm 0.14, $P < 0.001$ Survived versus Died; Creatinine-based eGFR 48.4 \pm 15.3 versus 42.5 \pm 17.2, $P < 0.001$ Sarcopenia 51 (15.1%) versus 57 (34.3%), $P < 0.001$	Our study demonstrates that eGFR, anaemia, sarcopenia, cognitive and physical impairment variably interact in predicting long-term survival of older patients discharged from acute care hospital.
Cys	Wilkinson et al 2021 ²¹	United Kingdom - Individ- uals with chronic kidney disease	BMI 25.9 ± 5.14 8767, 62.8 ± 6.8, Men: 4033 (46.0), Women: 4734 (54.0), BMI 29.3 ± 5.2	Sarcopenic versus Non-sarcopenic; Cystatin C 1.5 \pm 0.5 versus 1.3 \pm 0.4, P < 0.001	We found a probable sarcopenia prevalence of 9.7% among participants with reduced kidney function defined as an eGFR < 60 mL/min/1.73 m ² ; this prevalence was approximately double that seen in those without CKD. The presence of sarcopenia increases the risk of mortality and end-stage renal disease.
С	Yoshimura et al 2021 ²²	Japan - Stroke patients	813, 73.5 ± 11.8, Men: 423 (52), Women: 390 (48)	Creatinine-based eGFR ≥90 (117) versus 60–89 (363) versus 30–59 (302) versus 15–29 (28) versus <15 (3); Sarcopenia (%) 60 (51.3) versus 173 (47.7) versus 144 (47.7) versus 8 (28.6) versus 0 (0.0), P = 0.116	Elevated creatinine-based eGFR is associated with sarcopenia, dysphagia, and adverse rehabilitation outcomes after stroke. Our findings highlight the limitations of assessing renal function using creatinine levels in patients with sarcopenia; therefore, future studies using cystatin C are needed to validate our findings.

A/G, android to gynoid fat ration; ACR, urinary albumin-to-creatinine ratio; BIS, Berlin initiative study; BMI, body mass index; CKD, chronic kidney disease; CKD-EPI, chronic kidney disease epidemiological collaboration; Cr, creatinine; Cre, creatinine; cys, cystatin C; CysC, cystatin C; DEXA, dual-energy X-ray absorptiometry; eGFR, estimated glomerular filtration rate; EWGSOP, the European working group on sarcopenia in older people; FNIH, the Foundation of the National Institutes of Health; GFR, glomerular filtration rate; PEW, protein-energy wasting; SD, standard deviation; UACR, urine albumin: creatinine ratio.

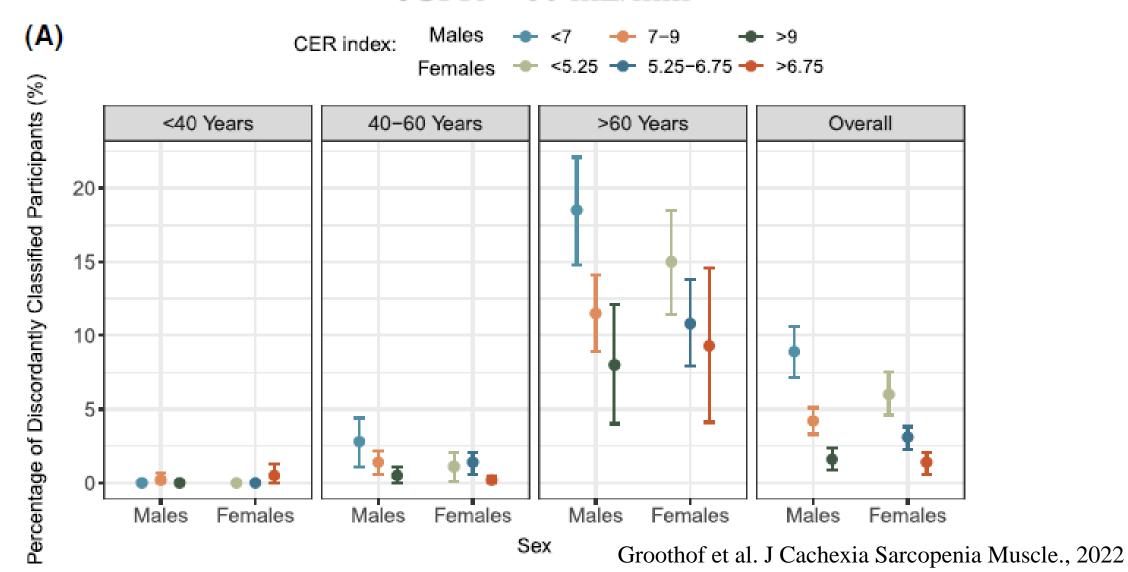

The committee agreed that in the absence of good evidence for their accuracy, the 2014 recommendations that cystatin-c equations should be considered during diagnosis in certain circumstances, should be removed. In particular, they noted that although using cystatin-c equations may reduce false-positive results, it is likely to also increase false negative results. This will avoid potentially misleading tests being conducted and the costs associated with these. They made a recommendation for research for a large study using UK data to evaluate the accuracy of cystatin-c equations

Other recommendations for research

Cystatin-C equations


What is the diagnostic accuracy of cystatin-C equations to estimate GFR as a measurement of kidney function in adults, young people and children in the UK? [2021]

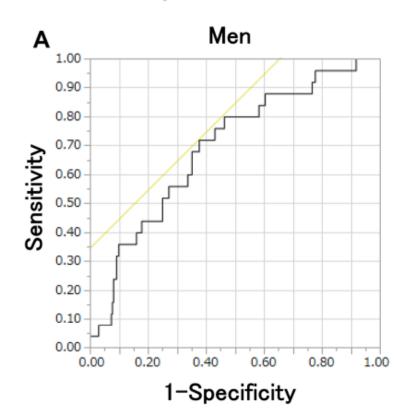
Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI



Groothof et al. J Cachexia Sarcopenia Muscle., 2022

Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

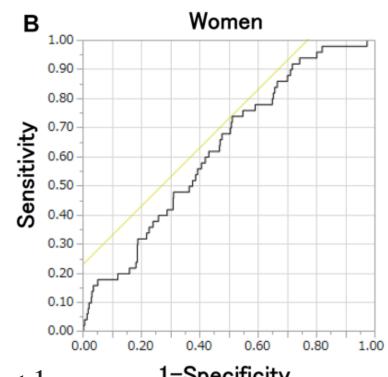
eGFR < 60 mL/min



Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

eGFRcre (mL/min/1.73 m²) eGFRcys (mL/min/1.73 m²) eGFRcys/eGFRcre

Men			Women			
Normal $(n=277)$	Sarcopenia (n=25)	p value	Normal (n = 597)	Sarcopenia (n=50)	p value	
68.4 ± 13.6	65.0 ± 13.2	0.230	69.5 ± 13.8	67.6±14.1	0.339	
72.5 ± 15.5	62.7 ± 16.9	0.003	75.8 ± 15.1	69.1 ± 17.1	< 0.001	
1.07 ± 0.17	0.96 ± 0.14	0.002	1.10 ± 0.17	1.02 ± 0.14	< 0.001	



AUC: 0.693 Cut off: 1.00

Specificity: 62.4%

Sensitivity: 72.0%

p=0.001

AUC: 0.630 Cut off: 1.09

Specificity: 48.9%

Sensitivity: 74.0%

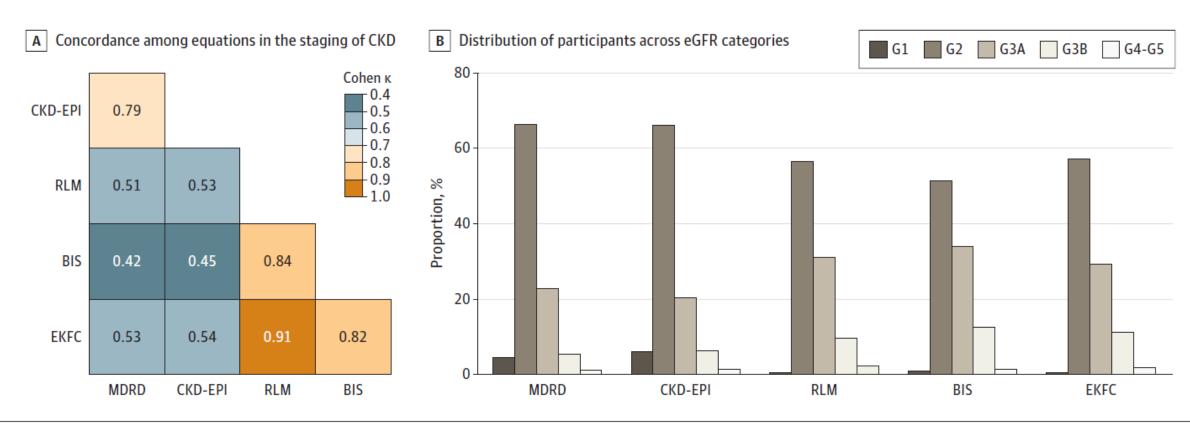
p<0.001

eGFRcys/eGFRcre < 1

1-Specificity

Kusunoki et al. Clinical and Experimental Nephrology, 2022

Equations for Assessing Estimated Glomerular Filtration Rate in Older Adults


Name		Equation
MDRD		175 x SCr ^{-1.154} x age ^{-0.203} x 1.212 (if patient is black)
		x 0.742 (if female)
CKD-	Men ($Scr \le 0.9$)	$141 \times (\text{Scr}/0.9)^{-0.411} \times 0.993^{\text{Age}}$
EPI	Men (SCr > 0.9)	$141 \times (SCr/0.9)^{-1.209} \times 0.993^{Age}$
(2009)	Women (SCr ≤0.7)	$144 \times (SCr/0.7)^{-0.329} \times 0.993^{Age}$
,	Women (SCr >0.7)	$144 \times (SCr/0.7)^{-1.209} \times 0.993^{Age}$
RLM		$e^{X-0.0158\times Age+0.438\times ln(Age)}$
	Men (SCr < 2.04)	$x = 2.56 + 0.00968 \times (180 - SCr)$
	Men (SCr \geq 2.04)	$x = 2.56 - 0.926 \times \ln(SCr/180)$
	Women (SCr < 1.7)	$x = 2.50 + 0.0121 \times (150 - SCr)$
	Women (SCr ≥ 1.7)	$x = 2.50 - 0.926 \times \ln(SCr/150)$
BIS		$3736 \times SCr^{-0.87} \times age^{-0.95} \times 0.82$ (if female)
EKFC	Men (SCr/0.9 <1)	107.3 x (SCr/0.9) ^{-0.322} x 0.990 ^(Age-40)
	Men (SCr/ $0.9 \ge 1$)	107.3 x (SCr/0.9) ^{-1.132} x 0.990 ^(Age-40)
	Women (SCr/0.7 < 1)	107.3 x (SCr/0.7) ^{-0.322} x 0.990 ^(Age-40)
	Women $(SCr/0.7 \ge 1)$	107.3 x (SCr/0.7) ^{-1.132} x 0.990 ^(Age-40)

Abbreviations. MDRD: Modification of Renal Disease; CKD-EPI: Chronic Kidney Disease Epidemiological Collaboration; RLM: Revised Lund-Malmo; BIS: Berlin Initiative Study; EKFC: European Kidney Function Consortium; SCr: Serum Creatinine

>3000 adults aged 60 years or older in Sweden

- Concordance
- Prognostic value (15 years)
- Sources of discrepancies

G1 represents eGFR ≥90 mL/min/1.73 m²; G2, 89.9-60 mL/min/1.73 m²; G3a, 59.9-45 mL/min/1.73 m²; G3b, 44.9-30 mL/min/1.73 m²; G4-5, <30 mL/min/1.73 m². BIS indicates Berlin Initiative Study; CKD-EPI, Chronic Kidney Disease Epidemiological Collaboration; EKFC, European Kidney Function Consortium; MDRD, Modification of Diet in Renal Disease; RLM, Revised Lund-Malmö.

	Overall (n = 3094)		Low muscle mass (n = 407) ^b		Low BMI (n = 744) ^c		Age ≥78 y (n = 1369)	
Equation	AUC (95% CI)	Harrel C (95% CI)	AUC (95% CI)	Harrel C (95% CI)	AUC (95% CI)	Harrel C (95% CI)	AUC (95% CI)	Harrel C (95% CI)
MDRD	0.66 (0.64-0.68)	0.62 (0.61-0.64)	0.72 (0.66-0.78)	0.61 (0.58-0.65)	0.66 (0.62-0.70)	0.62 (0.60-0.65)	0.58 (0.54-0.61)	0.56 (0.55-0.58)
CKD-EPI	0.72 (0.70-0.74)	0.67 (0.66-0.69)	0.78 (0.72-0.83)	0.64 (0.61-0.68)	0.73 (0.70-0.77)	0.67 (0.65-0.70)	0.60 (0.57-0.64)	0.58 (0.56-0.60)
RLM	0.78 (0.76-0.79)	0.71 (0.70-0.73)	0.81 (0.76-0.87)	0.67 (0.64-0.70)	0.79 (0.76-0.82)	0.72 (0.69-0.74)	0.63 (0.60-0.67)	0.60 (0.58-0.62)
BIS	0.80 (0.78-0.81)	0.73 (0.72-0.74)	0.82 (0.77-0.87)	0.68 (0.64-0.71)	0.81 (0.78-0.84)	0.73 (0.71-0.75)	0.64 (0.61-0.68)	0.61 (0.59-0.62)
EKFC	0.76 (0.74-0.77)	0.70 (0.69-0.71)	0.80 (0.75-0.86)	0.66 (0.63-0.69)	0.77 (0.74-0.81)	0.70 (0.68-0.73)	0.62 (0.58-0.65)	0.59 (0.57-0.61)

Abbreviations: AUC, area under the receiver operating characteristic curve; BIS, Berlin Initiative Study; BMI, body mass index; CKD-EPI, Chronic Kidney Disease Epidemiological Collaboration; EKFC, European Kidney Function Consortium; MDRD, Modification of Diet in Renal Disease; RLM, Revised Lund-Malmö.

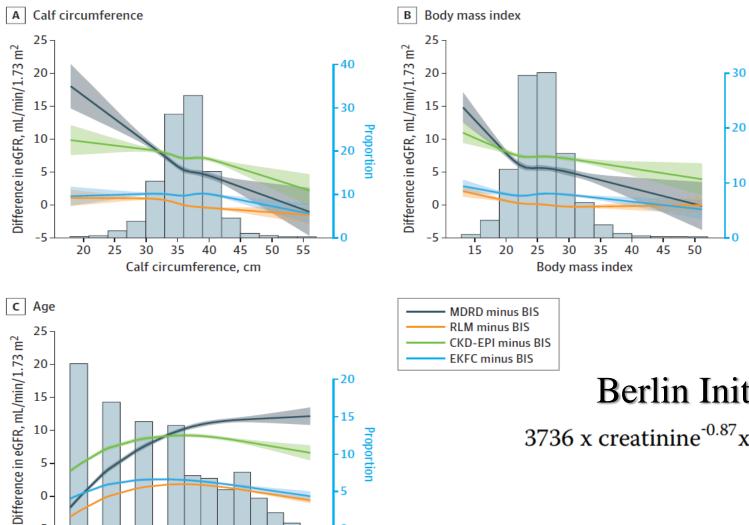
^a AUC and Harrel C statistics obtained from crude logistic regression and Cox regression models, respectively.

^b Low muscle mass included participants with calf circumference less than the 20th sex-specific percentile.

^c Low BMI included participants with BMI below 23.

80

65 70 75


85

Age, y

90

95 100 105

Figure 2. Discrepancies Between Estimated Glomerular Filtration Rate (eGFR) Equations

Proportion

Berlin Initiative Study

Proportion

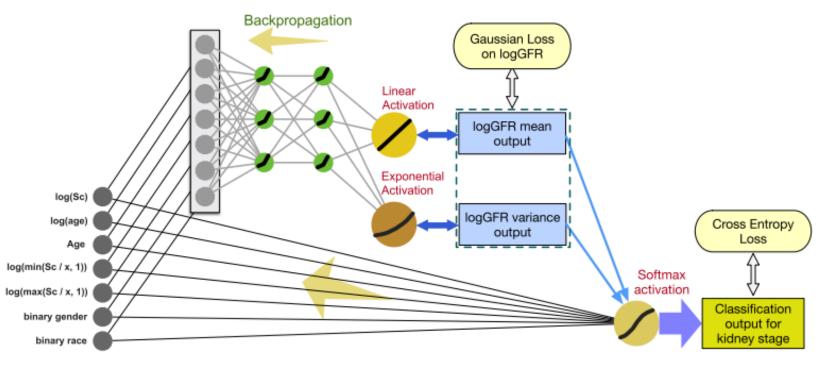
 $3736 \text{ x creatinine}^{-0.87} \text{x age}^{-0.95} \text{x } 0.82 \text{ (if female)}$

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 4, 2021

VOL. 385 NO. 19


New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race

L.A. Inker, N.D. Eneanya, J. Coresh, H. Tighiouart, D. Wang, Y. Sang, D.C. Crews, A. Doria, M.M. Estrella, M. Froissart, M.E. Grams, T. Greene, A. Grubb, V. Gudnason, O.M. Gutiérrez, R. Kalil, A.B. Karger, M. Mauer, G. Navis, R.G. Nelson, E.D. Poggio, R. Rodby, P. Rossing, A.D. Rule, E. Selvin, J.C. Seegmiller, M.G. Shlipak, V.E. Torres, W. Yang, S.H. Ballew, S.J. Couture, N.R. Powe, and A.S. Levey, for the Chronic Kidney Disease Epidemiology Collaboration*

Characteristic	eGFRcr 2009 Development Data Set			eGFRcr-cys 2012 Development Data Set			2021 Validation Data Set		
	Overall (N = 8254)	Black (N = 2601)	Non-Black (N = 5653)	Overall (N = 5352)	Black (N = 2123)	Non-Black (N = 3229)	Overall (N = 4050)	Black (N = 579)	Non-Black (N=3471)
Percent of overall population	100	31.5	68.5	100	39.7	60.3	100	14.3	85.7
Age — yr	47.0±14.8	52.8±12.0	44.3±15.2	46.5±15.1	53.1±11.6	42.2±15.6	57.0±17.4	53.6±12.6	57.6±18.0
Age category — no. (%)									
<40 yr	2921 (35.4)	397 (15.3)	2524 (44.6)	2008 (37.5)	299 (14.1)	1709 (52.9)	715 (17.7)	59 (10.2)	656 (18.9)
40–65 yr	4309 (52.2)	1807 (69.5)	2502 (44.3)	2625 (49.0)	1463 (68.9)	1162 (36.0)	1989 (49.1)	417 (72.0)	1572 (45.3)
>65 yr	1024 (12.4	397 (15.3)	627 (11.1)	719 (13.4)	361 (17.0)	358 (11.1)	1346 (33.2)	103 (17.8)	1243 (35.8)

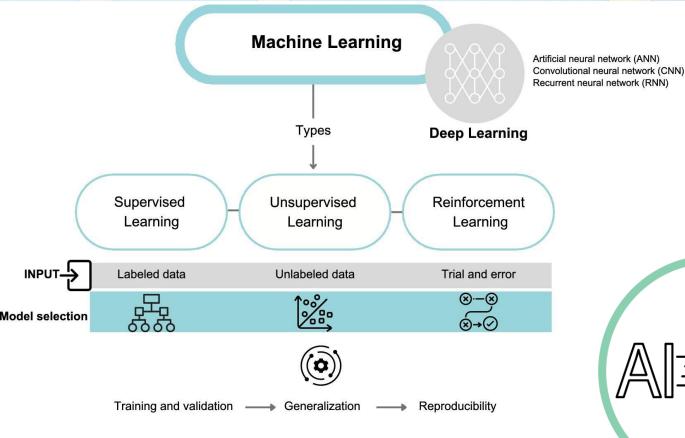
GFR: Urinary iothalamate clearance

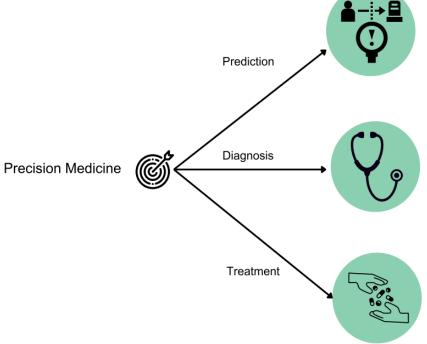
- **CRIC**: The CRIC Study is a prospective cohort study that examines risk factors for progression of CKD and CVD among patients with established CKD [16].
- MDRD: The MDRD consisted of two randomized trials that investigated if protein restriction and control of blood pressure had an effect on CKD progression [17].
- AASK: The AASK randomized trial investigated the effects of blood pressure control and the use of specific antihypertensive regimens on the progression of chronic kidney disease in African Americans [18], [19].
- **DCCT/EDIC**: DCCT/EDIC trial and prospective follow-up studied the effect of intensive vs. conventional diabetes therapy on development and progression of vascular and neurologic complications of type 1 diabetes [20], [21].
- **CRISP**: The CRISP longitudinal cohort makes prospective, longitudinal measurements of cyst and kidney growth in a large cohort of patients with Autosomal dominant polycystic kidney disease [22].
- **ALTOLD**: ALTOLD was a prospective cohort study designed to understand the pathophysiological effects of kidney donation [23], [24].



PERFORMANCE OF GLOMERULAR FILTRATION RATES ESTIMATES

	Median eGFR	Median difference	Median absolute	$Accuracy_{30}^{lpha}$	$Accuracy_{15}^{\alpha}$	
	(IQR)	from GFR (IQR)	difference $^{\alpha}$ (IQR)	N (%)	N (%)	
dlGFR	43.3 (28.6, 60.7)	-1.8 (-8.3, 2.9)	5.5 (2.3, 11.3)	4041 (88.3)	2572 (56.2)	
CKD-EPI	43.9 (28.9, 63.6)	-1.7 (-8.2, 3.3)	5.6 (2.4, 11.6) **	3985 (87.1)	2432 (53.2)	
MDRD	42.9 (28.3, 61.4)	-2.8 (-10.5, 1.9)	5.8 (2.4, 12.5)**	3876 (84.7)**	2337 (51.1)**	


Ritorno al futuro FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI


Ritorno al futuro

FIRENZE, 13-16 DICEMBRE 2023 PALAZZO DEI CONGRESSI

Summary

- Need for study on cystatine C in CKD sarcopenic patients
- Most studies used creatinine to estimate eGFR in sarcopenic patients
- Creatinine-based eGFR through 2021 CKD-EPI as first approach
- Confirmation of eGFR through 2021 CKD-EPI creatinine-cystatin C equation
- BIS equation and cystatin C possible surprises in the short term, waiting for AI