

Il trattamento dell'iperkaliemia

Giovambattista Desideri UO Geriatria e Lungodegenza Dipartimento MESVA Università degli Studi di L'Aquila

Storie di tutti i giorni.....

4.1096.4a+1

10 × 11 ×

Stampa

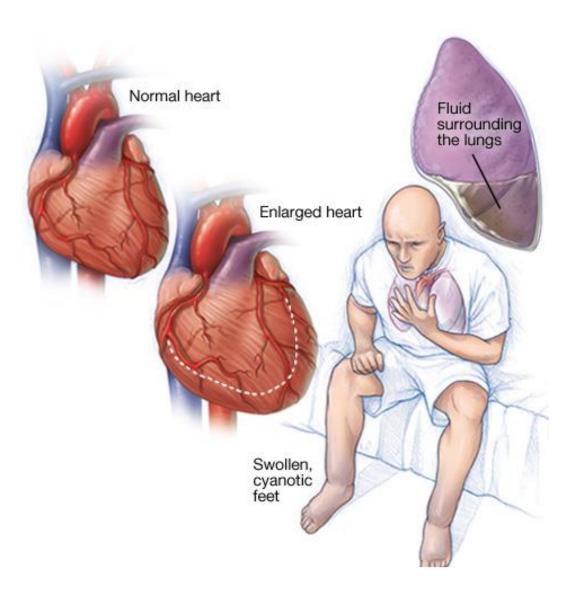
Richiesta: 04047794 del 04/04/2018 Provenienza: A432 A-Geriatria

 Data di accettazione:
 04/04/2018

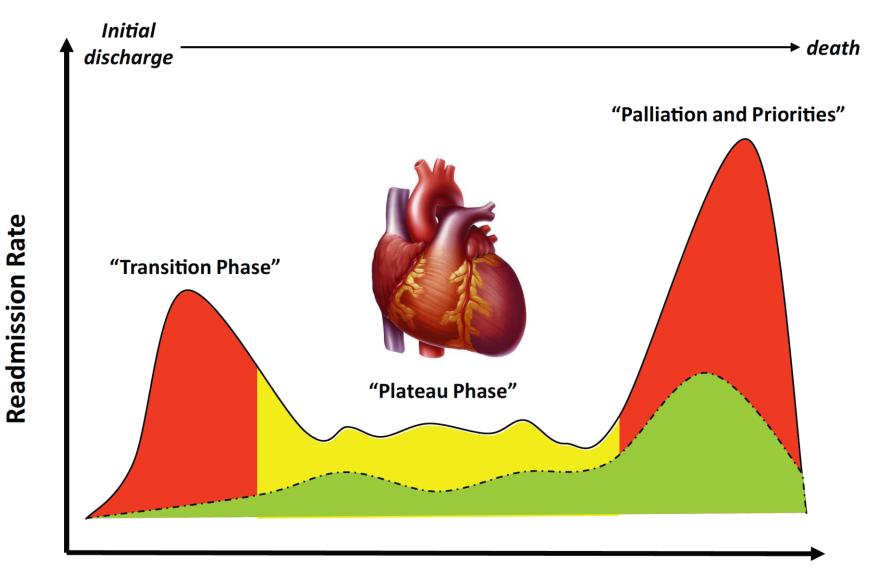
 Data e ora di presa in carico:
 04/04/2018
 09:41

 Data e ora di stampa:
 05/04/2018
 11:45

ESAMI IN ROUTINE

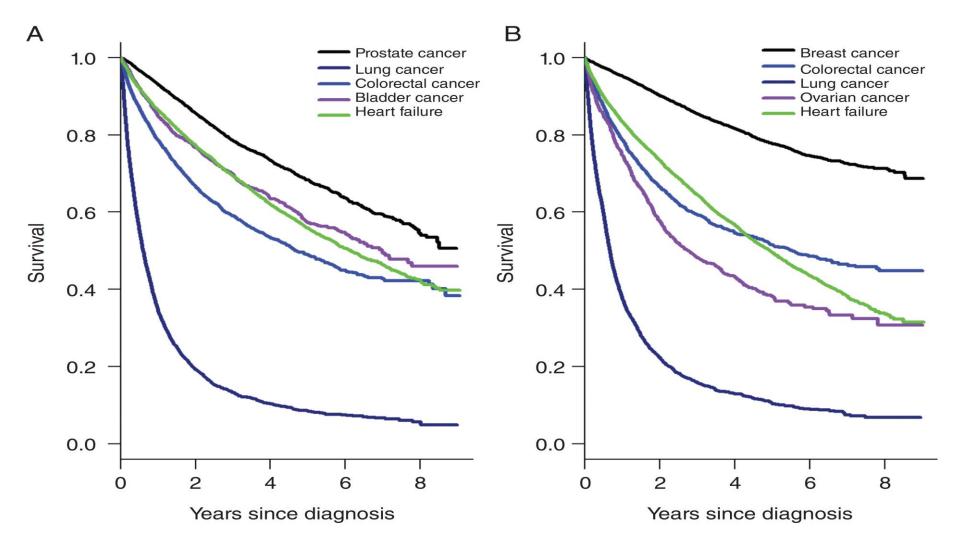

Esame	Esito	U.M.	Valori di Riferimento	Metodica Val	idator
1	Biochimi	ica Clinica		al and a state of the	
S-GLUCOSIO	147	* mg/dl	60 - 110	(Colorimetrica)	T03
S-UREA	100	* mg/dl	10 - 50 EI	(Colorimetrico)	T03
S-CREATININA	1.28	* mg/dl	0.70 - 1.20	(Colorimetrica 2 pun	
Filtrato Glomerulare Medio	53	m1/min/1,73 n	ng > 60	· :	100
	anni caucasich	ne; moltiplicare per 1. R < 60 ml/min/1.73 ma	e MDRD, valido per p 21 se di etnia afro-amo g vanno valutati nell'a	ericana.	
S-SODIO	140	mEq/L	135 - 150	(Ioni selettivi)	T03
S-POTASSIO	6.4	* mEq/L	3.5 - 5.5	(Ioni selettivi)	T03
S-CALCIO TOTALE	9.2	mg/dl	8.5 - 11.0	(Colorimetrica)	T03
S-COLESTEROLO TOTALE	145	mg/dl	Valore ottimale: 150 - 200 (3) Border line: 200 - 240 Alto: >240	(Colorimetrica)	Т03
STRIGLICERIDI	51	* mg/dl	60 - 170	(Colorimetrico)	T03
STATO STAN	8.9	* mg/dl	3.5 - 7.0 p.	(Colorimetrica)	T03
S-PROTEINE TOTALI	7.0	g/dL	6.6 - 8.7 0-1 10	(Colorimetrica)	T03
S-AST-GOT(Aspartato-Amino-Tra	nsferasi 22	UI/L	5 - 34	(Cinetica)	T03
S-ALT-GPT(Alanina Amino Trans	ferasi) 21	UVL	7 - 55	(Cinetica)	T03
S-LATTICO DEIDROGENASI (LI	DH) 212	UI/L	125 - 220	(Cinetica)	T03
S-CREATINCHINASI (CPK -CK)	140	UI/L	30 - 200	(Cinetica.)	T03
S-GAMMA GT (G. Glutamil Trans	ferasi) 69	UI/L	12 - 64 .ic	(Cinetica)	T03
S-BILIRUBINA TOTALE (BT)	0.75	mg/dl	0.20 - 1.20	(Colorimetrica)	T03
S-FERRO	27	* μg/dl	65 - 175	(Colorimetrica)	T03
S-Albumina	3.3	* g/dL	3.5 - 5.0	(Colorimetrica)	T03
	1111		i p	4 14	

Sig.

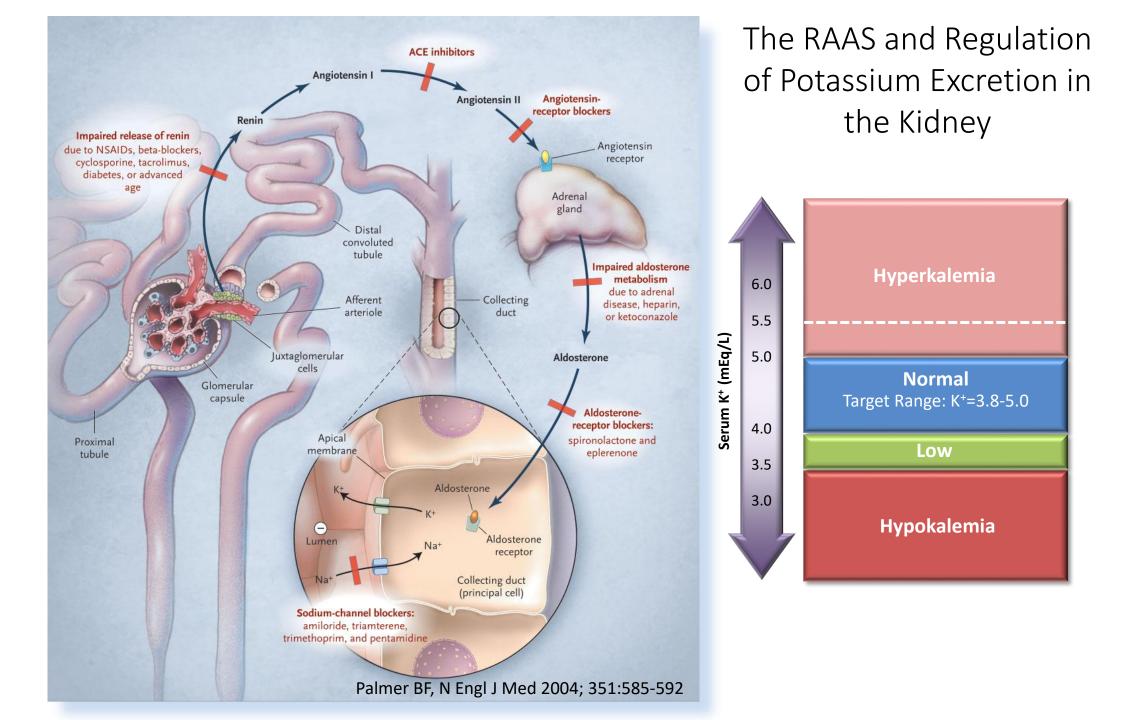

Data Nascita: 01/06/1925 Identificativo Paziente: 00001721

Sesso M Età: 92 Anni

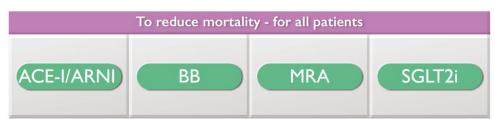
P-Tempo di Protrombina (PT) Titaboratorio effettua controllo di qualità interno con sistema UNITY della ditta BIO-RAD, e partecipa al controllo esterno di qualità della Regione ABRUZZO Referto rilasciato in Copia Conforme; l'originale è disponibile presso il Laboratorio Analisi del P.O. di Avezzano

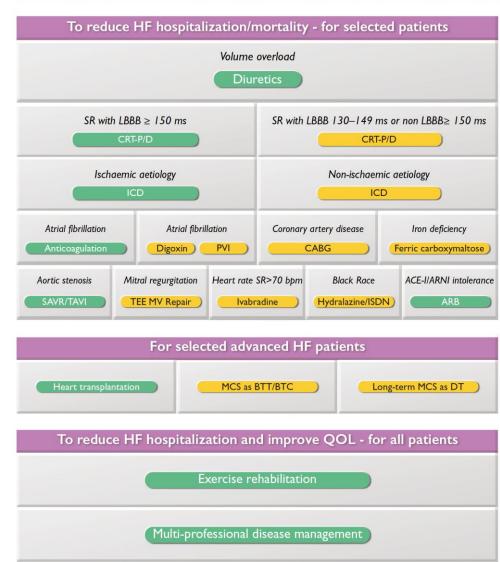


Rehospitalization for Heart Failure



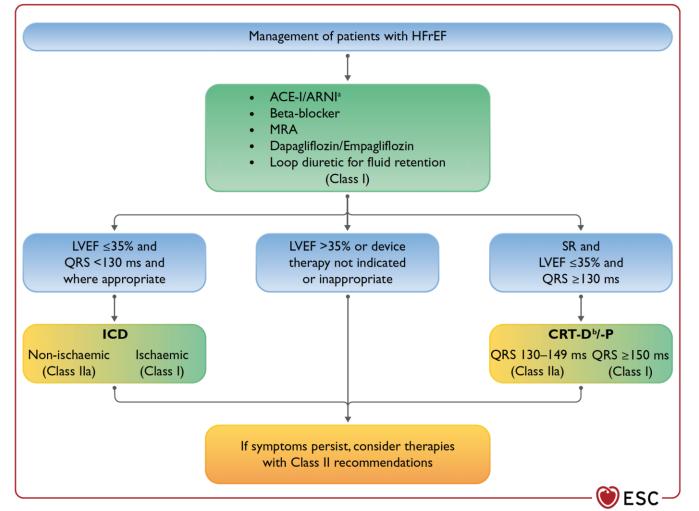
Median Time from hospital discharge

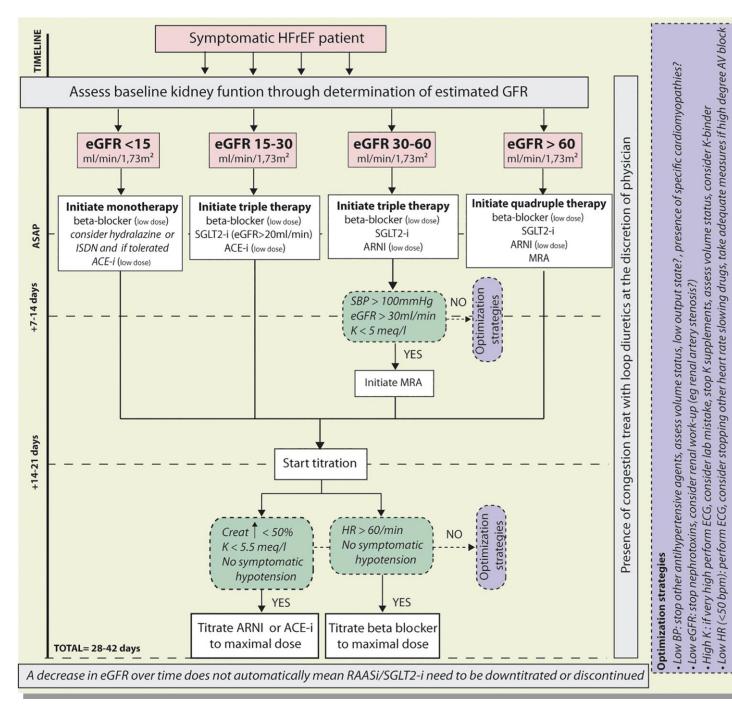

Kaplan–Meier curves for overall survival in (A) men or (B) women with different cancer or heart failure



Mamas MA et al. European Journal of Heart Failure (2017) 19, 1095–1104

Management of HFrEF



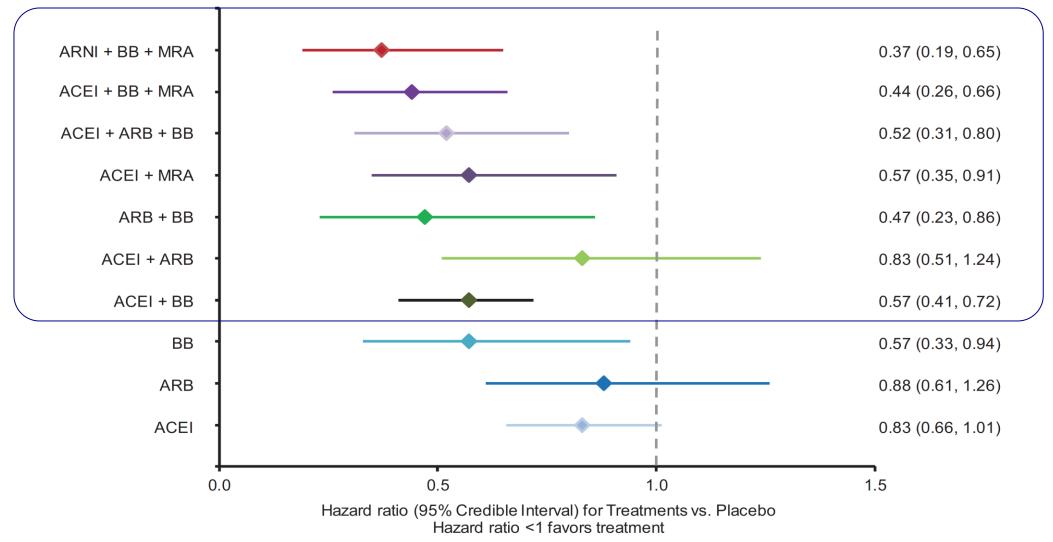


2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

With the special contribution of the Heart Failure Association (HFA) of the ESC

European Society of Cardiology doi:10.1002/ejhf.2471


Renal effects of guideline-directed medical therapies in heart failure: a consensus document from the Heart Failure Association of the European Society of Cardiology

Mullens W et al. Eur J of Heart Failure (2022) 24, 603-619

Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction A Network Meta-Analysis

All-cause mortality

Burnett H et al. Circ Heart Fail. 2017;10:e003529.

HIGH RAASI DOSES OFFER BETTER CV PROTECTION FOR PATIENTS WITH HF

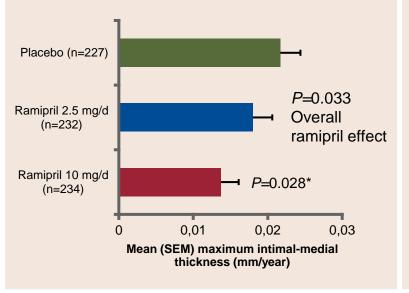
ATLAS¹

Double-blind, prospective trial assessing the effects of lisinopril on CV outcomes in patients with HF (NYHA II–IV) with ejection fraction ≤30%

Compared with low-dose, patients receiving high-dose lisinopril had:

8% risk reduction of <u>all-cause mortality</u>
 HR 0.92; P=0.128

risk reduction of <u>CV mortality</u> HR 0.90; *P*=0.073


fewer hospitalisations 3,819 vs 4,397; *P*=0.021

lower risk of <u>HF hospitalisation</u> 1,199 vs 1,576; *P*=0.002

SECURE²

Double-blind, prospective trial evaluating the effects of long-term ramipril and vitamin E on atherosclerosis progression in patients at high risk of CV events

Compared with low-dose RAASi, <u>high-dose RAASi</u> may be **more effective** at reducing atherosclerosis progression in patients with **high-risk of CV events**

HEAAL³

Double-blind, prospective trial investigating effects of high-dose vs low-dose losartan on clinical outcomes in patients with HF

Compared with low-dose, patients receiving high-dose losartan had:

> risk reduction of <u>all-cause mortality</u> or <u>HF hospitalisation</u> HR 0.90; *P*=0.027

9%

10%

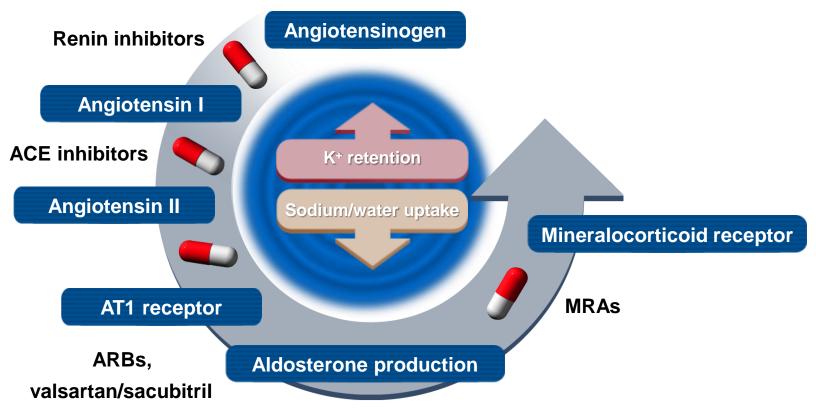
risk reduction of <u>HF hospitalisation</u> HR 0.87; *P*=0.025

risk reduction of <u>CV mortality</u> or <u>CV hospitalisation</u> HR 0.91; *P*=0.034

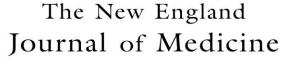
12% H

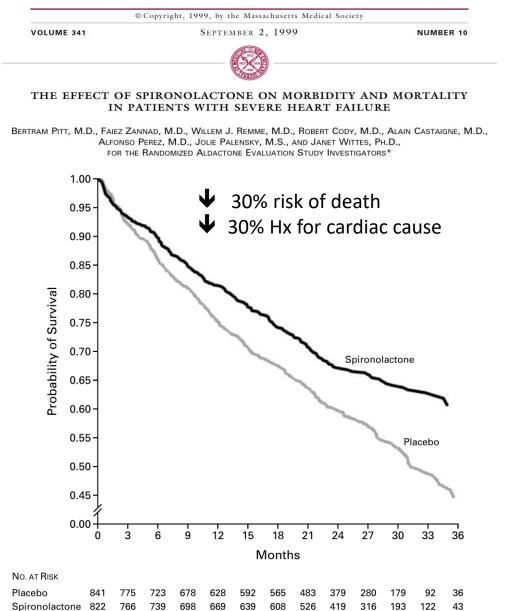
risk reduction of <u>CV mortality</u> or <u>HF hospitalisation</u> HR 0.88; *P*=0.011

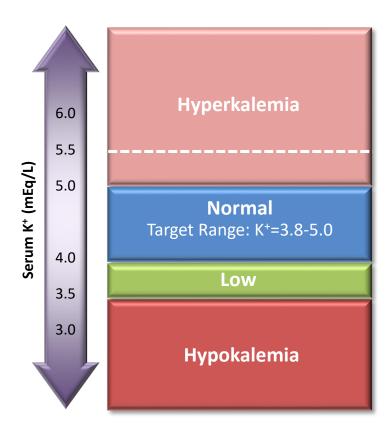
*vs placebo. See slide notes for abbreviations.


10%

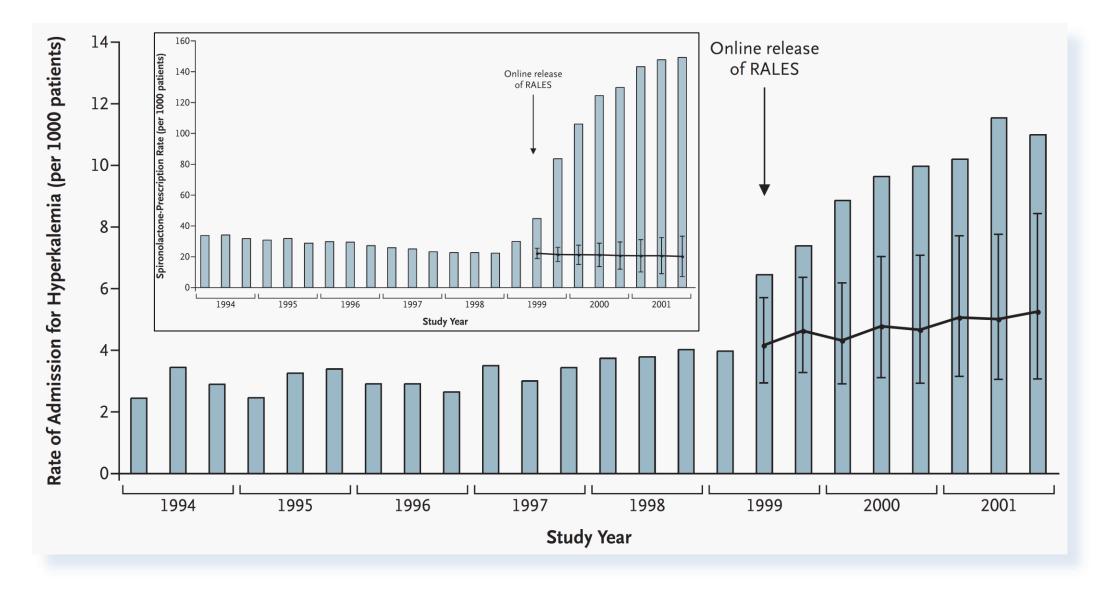
3%

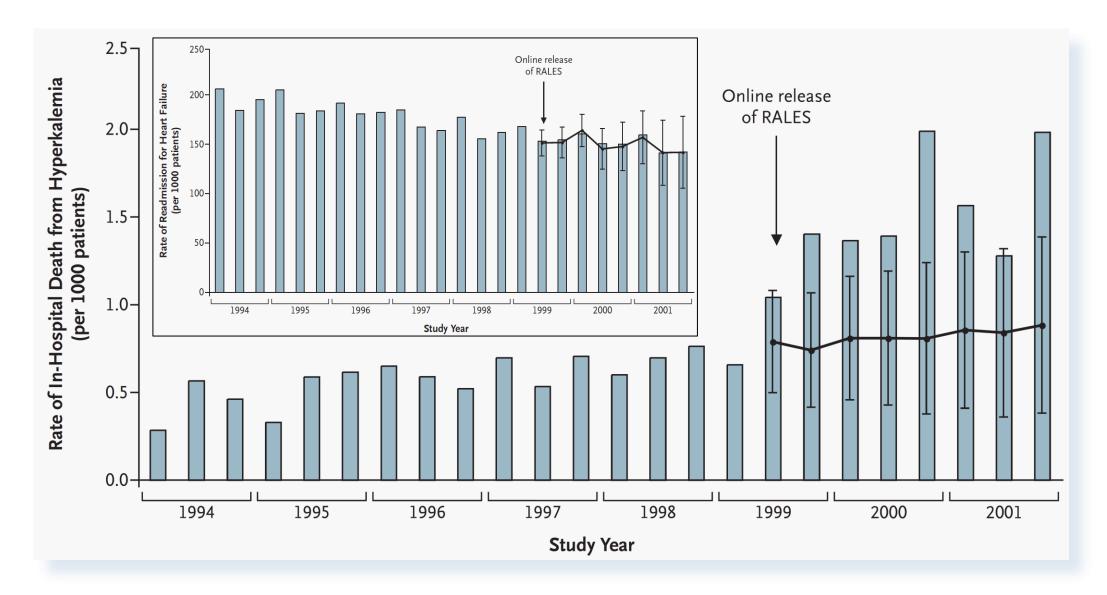

1. Packer M, et al. Circulation. 1999;100:2312–18; 2. Lonn EM, et al. Circulation. 2001;103:919–25; 3. Konstam MA, et al. Lancet 2009;374:1840–8.


ALL RAASI INCREASE SERUM POTASSIUM LEVELS

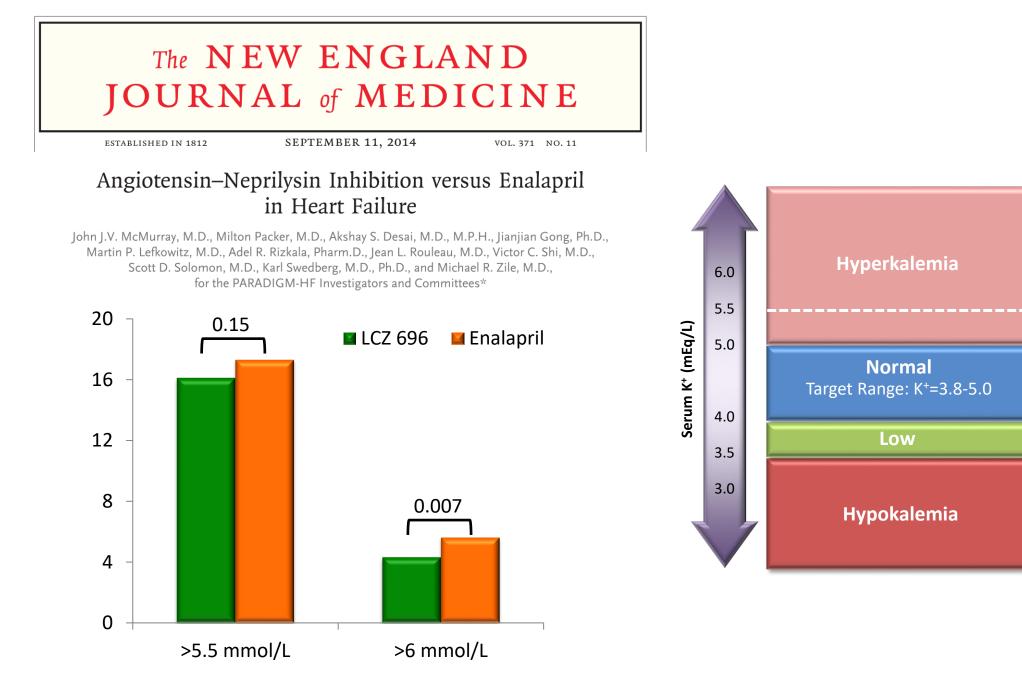

Hyperkalaemia is an inherent risk in the treatment of HF with RAASi

ACE, angiotensin-converting-enzyme; ARB, angiotensin II receptor blocker; AT1, angiotensin II receptor type 1; HF, heart failure; K⁺, potassium; MRA, mineralocorticoid receptor antagonist; RAASi, renin-angiotensin-aldosterone system inhibitor. Palmer BF. New Engl J Med. 2004;351:585–92; Ponikowski P, et al. Eur Heart J. 2016;37:2129–200.



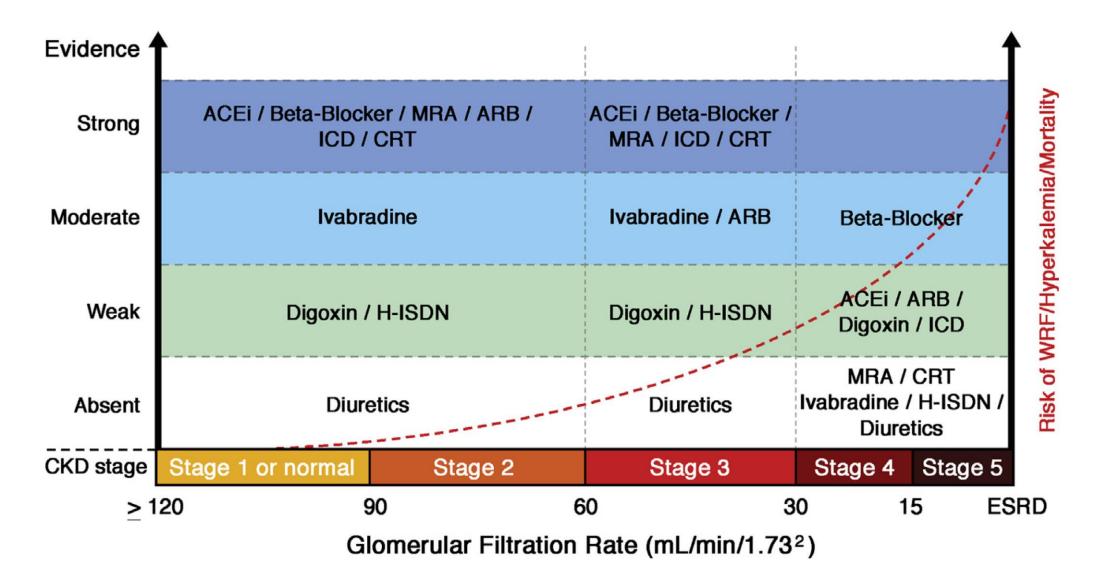

one 822 766 739 698 669 639 608 526 419 316 193 122 43 Pitt B et al. N Eng J Med 1999

Rate of hospital admission for hyperkalemia among patients recently hospitalized for HF who were receiving ACE-I



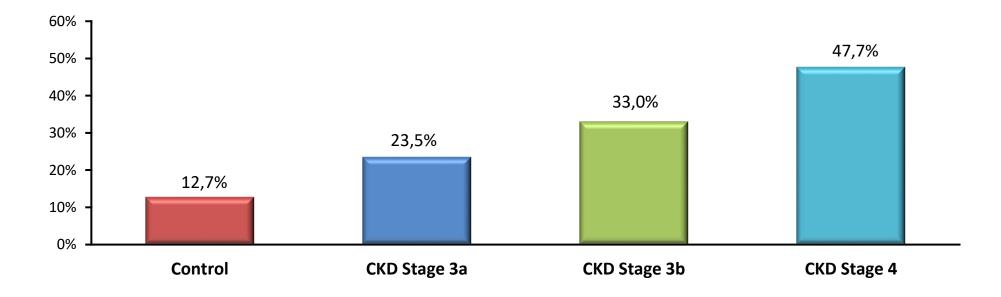
Juurlink DN et al. N Engl J Med 2004;351:543-51.

Rate of hospital admission for hyperkalemia among patients recently hospitalized for HF who were receiving ACE-I

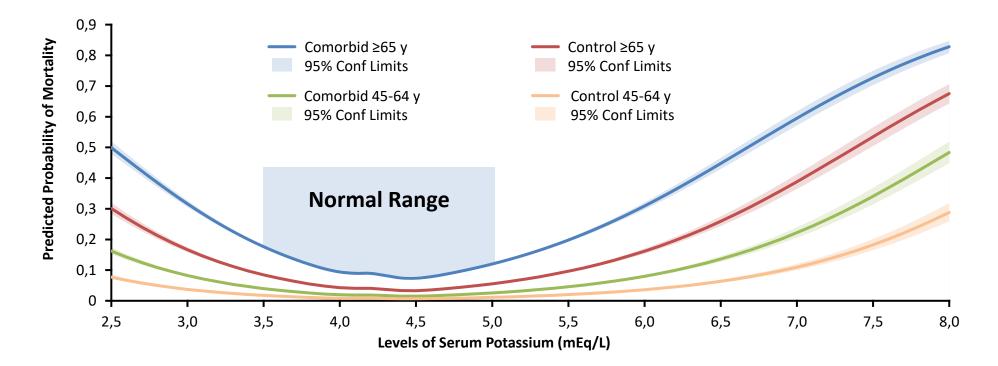


Juurlink DN et al. N Engl J Med 2004;351:543-51.

McMurray JJV et al. N Engl J Med 2014;371:993-1004.


Current Evidence on Treatment of Patients With Chronic Systolic Heart Failure and Renal Insufficiency

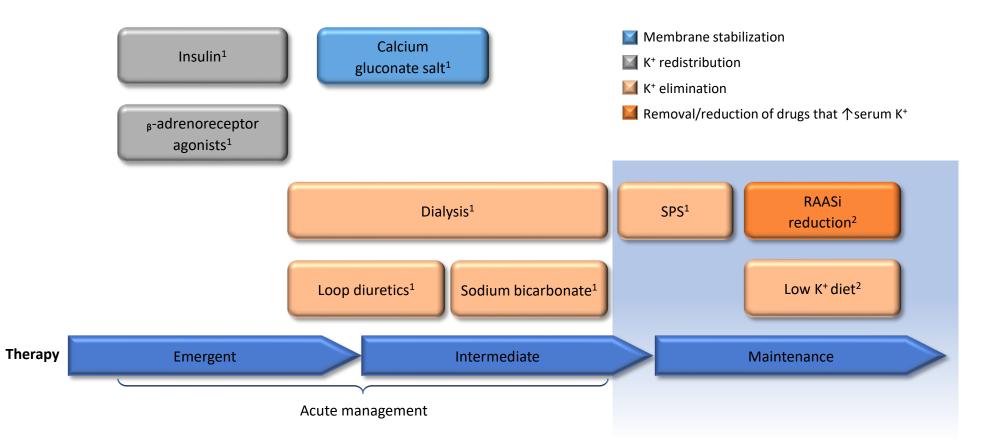
Damman K et al. J Am Coll Cardiol 2014;63:853-71


Hyperkalemia Is Prevalent Among Older Populations With Advanced Kidney Disease

5-Year Database Prevalence of Hyperkalemia Control Population vs CKD Stages 3a, 3b, and 4 in Patients ≥65 Years

- CKD: chronic kidney disease
- Based on an analysis of 1.63 million persons aged ≥5 years with K⁺ readings on 2 dates (2008-2012), with >1 K⁺ value between 2.5 and 10 mEq/L during 2008-2012. Control population composed of patients ≥65 years without CKD stages 2-5, heart failure, diabetes, or end-stage renal disease (ESRD).
- Hyperkalemia defined as highest reported K^+ value $\geq 5.1 \text{ mEq/L}$ in 2008-2012.
- Data on file. Relypsa, Inc., Redwood City, CA. Data source: Humedica, Cambridge, MA.

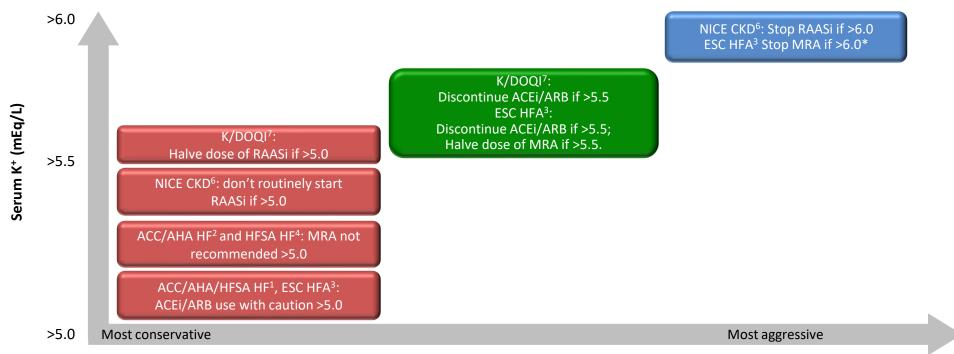
Adjusted Mortality^{*} by Serum K⁺ Level in Patients 45 to 64 Years and ≥65 Years With and Without Comorbid Illness



Increases in mortality remained after adjustments for demographic characteristics and comorbidities

*Evaluated through de-identified medical records (2007-2012) of individuals with ≥2 mEq/L serum K⁺ readings (Humedica, Cambridge, MA). Spline analyses were performed to assess mortality at 0.1 mEq/L increments of serum K⁺ after adjusting for covariates and interactions. Comorbid patients are those with diabetes, heart failure, CKD stages 3-5, cardiovascular disease, or hypertension.

Pitt B, et al. 2014 AHA Scientific Sessions; November 15-19, 2014; Chicago, IL; Poster 2443.


Traditional Treatment Options for Hyperkalemia

RAASi: renin-angiotensin-aldosterone system inhibitor, SPS: sodium polystyrene sulfonate

1. Weisberg L. Crit Care Med. 2008;36(12):3246-3251. 2. Palmer BF, et al. N Engl J Med. 2004;351(6):585-592.

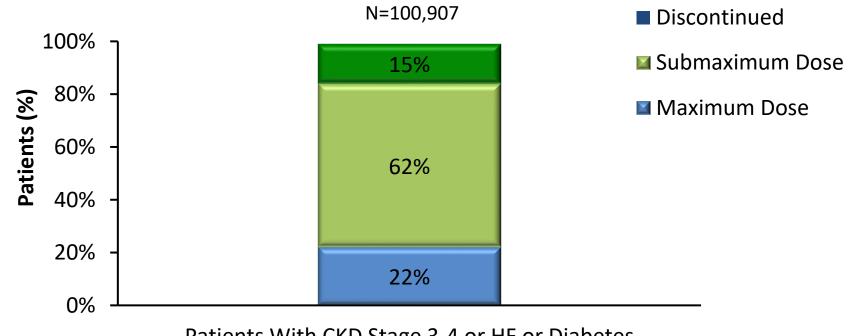
Guidelines Recommend RAASi Dose Modifications With Increasing Serum K+

Serum K⁺ Threshold Before Change in RAASi Guideline Recommendation

KDIGO Guidelines do not provide recommendations⁵

*ESC HFA: Management of acute hyperkalemia (>6.0) may require a short-term cessation of K⁺-retaining agents and RAASi, but this should be minimized and RAASi should be carefully reintroduced as soon as possible while monitoring K⁺ levels.³

1. Yancy CW, et al. Circulation. 2016;134:[Epub ahead of print]. 2. Yancy CW, et al. Circulation. 2013;128:1810-1852. 3. Ponikowski P, et al. European Heart Journal. 2016 May 20. pii: ehw128. [Epub ahead of print]. 4. Heart Failure Society of America, Lindenfeld J, et al. J Card Fail. 2010;16(6):475-539.

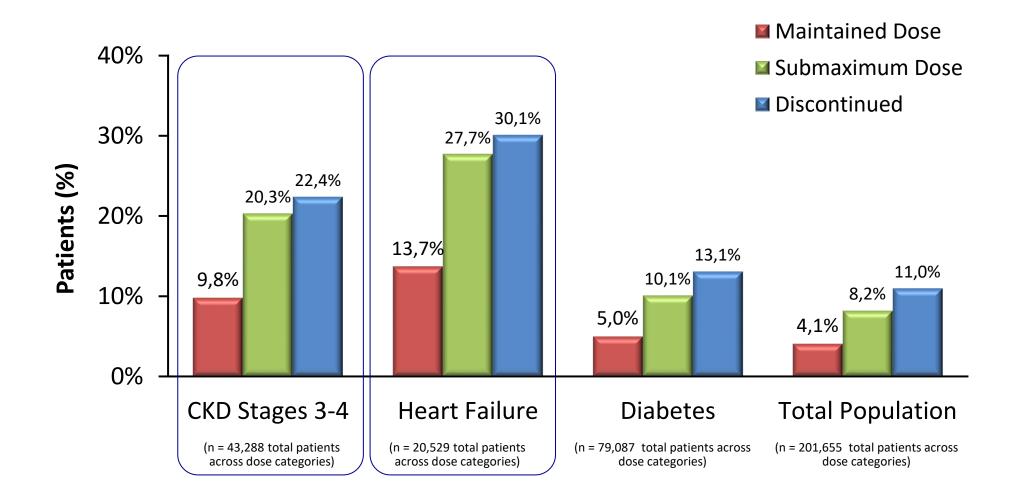

5. KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1). 6. National Institute for Health and Clinical Excellence (NICE) [UK]. Chronic kidney disease (partial update): Early identification and management of chronic kidney disease in adults in primary and secondary care. 2014.

https://www.nice.org.uk/guidance/cg182/evidence/update-full-guideline-191905165. **7.** National Kidney Foundation. Guideline 11.

http://www2.kidney.org/professionals/kdoqi/guidelines_bp/guide_11.htm. Accessed February 17, 2015.

Few Patients Are on Maximum RAASi

• Distribution of RAASi Dose Levels in Patients With CKD Stage 3-4 or Heart Failure or Diabetes



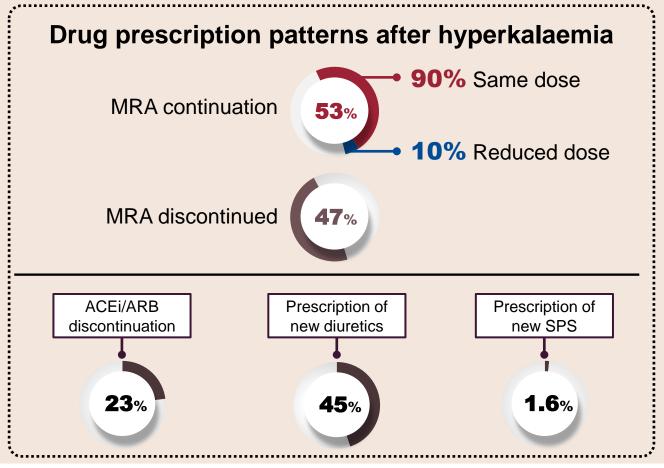
Patients With CKD Stage 3-4 or HF or Diabetes

- RAASi prescriptions were classified by dose level using the following dose categories:
 - "Maximum," defined as the labeled dose
 - "Submaximum," defined as any RAASi dose lower than the labeled dose
 - "Discontinued," defined as the absence of RAASi prescriptions for >390 days subsequent to prior prescription

Epstein M, et al. Am J Manag Care. 2015;21:S212-S220.

Percent Mortality by Prior RAASi Dose

Epstein M, et al. Am J Manag Care. 2015;21:S212-S220.


RAASI ARE FREQUENTLY DISCONTINUED OR REDUCED IN PATIENTS WITH HF AFTER A HYPERKALAEMIA EVENT

Objective

This study investigated the 1-year incidence and clinical HK predictors, and quantified drug prescription changes after an episode of HK in 13,726 Swedish patients initiating MRA therapy during 2007–2010

MRA discontinuation

- Discontinuation rates were higher after moderate/severe (K⁺ >5.5 mEq/L) and <3 months from MRA initiation
- Participants with CKD carried the highest risk of MRA discontinuation

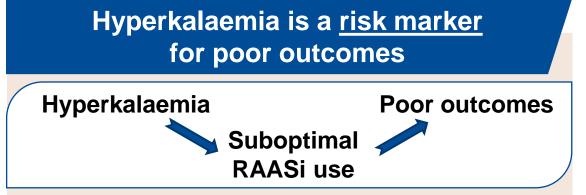
UNRAVELLING THE INTERPLAY BETWEEN HK, RAASI USE AND CLINICAL OUTCOMES

Risk of CV death due to HK was no longer statistically significant after controlling for RAASi therapy discontinuation; data from the ESC-HFA-EORP Heart Failure Long-term Registry (n~9000)

	Mediator	K⁺ at baseline, mEq/L	Risk of CV death HR (95% CI)		<i>P</i> -value		
	ACEi discontinuation	5–5.5	0.89 (0.76, 1.05)		0.171		
		>5	0.97 (0.74, 1.27)		0.814		
	ARB discontinuation	5–5.5	1.04 (0.90, 1.20)		0.623		
		>5	1.03 (0.79, 1.34)	⊢	0.827		
	MRA discontinuation	5–5.5	0.99 (0.85, 1.15)	⊢	0.898		
		>5	0.85 (0.66, 1.10)		0.213		
	HK a risk marker for RAASi discontinuation rather an being a risk factor for worse outcomes? Ban being a risk factor for worse outcomes?						

ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; CV, cardiovascular; ESC-HFA-EORP, European Society of Cardiology Heart Failure Association EURObservational Research Programme; HK, hyperkalaemia; HR, hazard ratio; MRA, mineralocorticoid receptor antagonist; RAASi, renin-angiotensin-aldosterone system inhibitor. Rossignol P, *et al. Eur J Heart Fail.* 2020;22:1378–89.

HYPERKALAEMIA AS A RISK MARKER IN HEART FAILURE

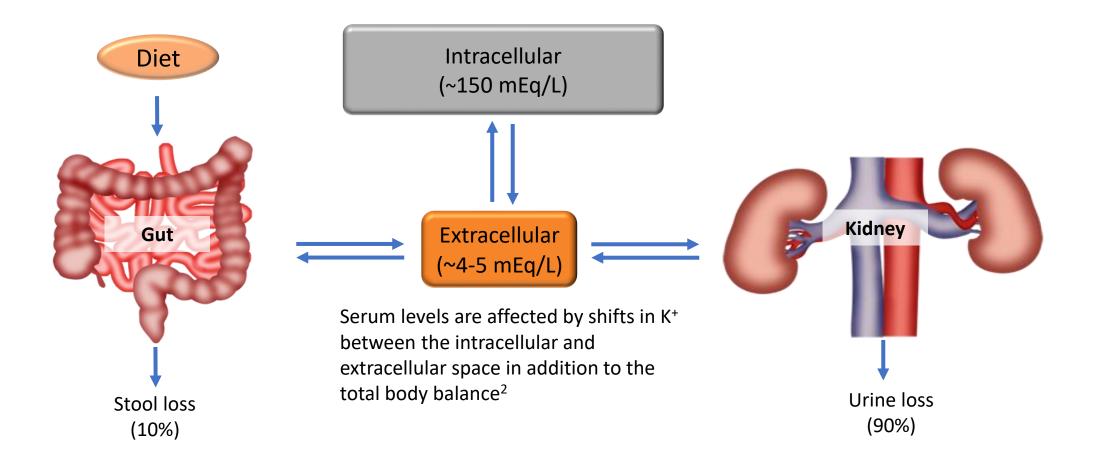

Hyperkalaemia is <u>not a risk factor</u> for poor outcomes

Hyperkalaemia

Poor outcomes

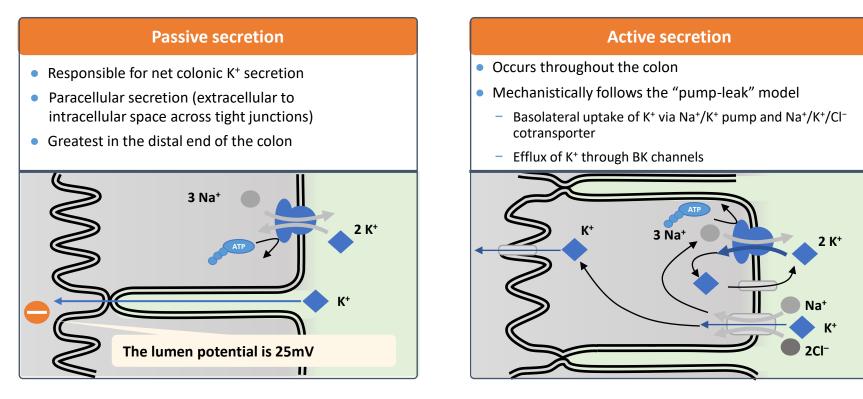
- A U-shaped relationship between K⁺ and poor outcomes has been observed in HF and CKD¹⁻³
- However, multivariable adjustment varies and data for the association of hyperkalaemia with worse outcomes are inconsistent⁴

- According to several clinical trials, the benefit of RAASi was not attenuated by hyperkalaemia^{5–7}
- Instead, real-world studies have demonstrated that suboptimal use of RAASi due to hyperkalaemia have been associated with poor clinical outcomes^{8,9}


The main goal for patients with HFrEF and concomitant CKD and/or hyperkalaemia should be to optimise RAASi use¹

CKD, chronic kidney disease; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; K⁺, potassium; RAASi, renin-angiotensin-aldosterone system inhibitor.

^{1.} Lund LH and Pitt B. Eur J Heart Fail. 2018;20:931–2; 2. Luo J, et al. Clin J Am Soc Nephrol. 2016;11:90–100; 3. Aldahl M, et al. Eur Heart J. 2017;38:2890–96;

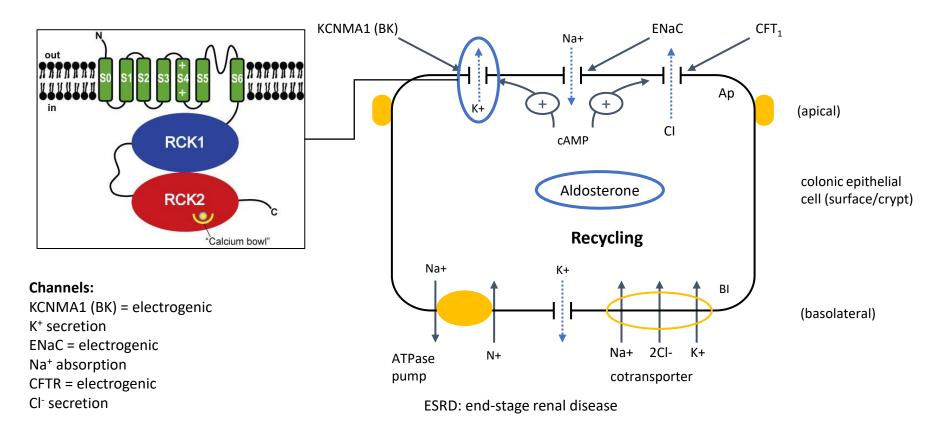

^{4.} Martens P, et al. Acta Cardiol. 2020;1–9 doi: 10.1080/00015385.2020.1771885; 5. Vardeny O, et al. Circ Heart Fail. 2014;7:573–9; 6. Rossignol P, et al. Circ Heart Fail. 2014;7:51–8; 7. Beusekamp JC, et al. Eur J Heart Fail. 2018;20:923–30; 8. Epstein M, et al. Am J Manag Care. 2015;21:S212–20; 9. Rossignol P, et al. Eur J Heart Fail. 2020;22:1378–89.

Normal Potassium Distribution^{1,2}

- 1. Evans KJ, Greenberg A. J Intensive Care Med. 2005;20(5):272-290.
- 2. Brown RS. Am J Med. 1984;77(5A):3-10.

The Response to Elevated Serum K⁺ Levels Is an Increase in Colonic K⁺ Secretion Using 2 Mechanisms

BK: big K⁺; Cl⁻: chloride; Na⁺, sodium.


Binder HJ. In: Boron WF, Boulpaep EI, eds. Medical Physiology. Philadelphia, PA: Elsevier; 2005:931-946.

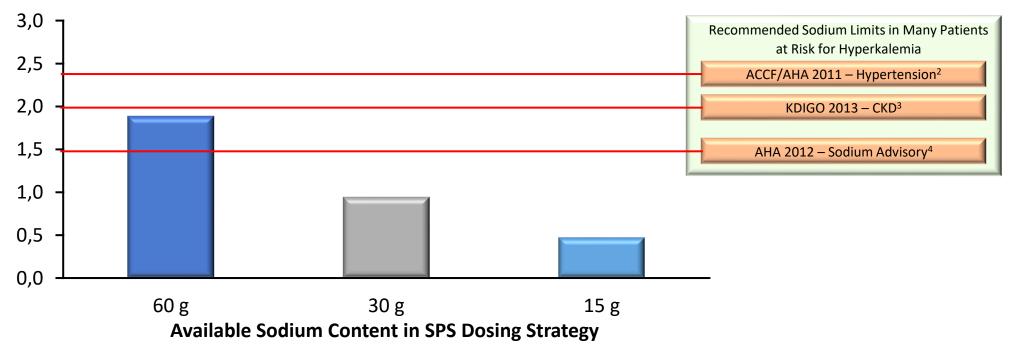
CKD and ESRD Adaptation Includes Increased K⁺ Secretion in the Colon

In CKD and ESRD patients, active K⁺ secretion is increased (>70 mEq/day)¹

Increased BK channel expression and concentration on the colonic epithelial cell apical surface²

As CKD progresses, BK channel content increases independent of plasma K+ concentration, transmucosal potential difference, or aldosterone status²

1. Mathialahan T, et al. J Pathol. 2005;206(1):46-51. 2. Sandle GI, et al. Q J Med. 2009;159:1-5.

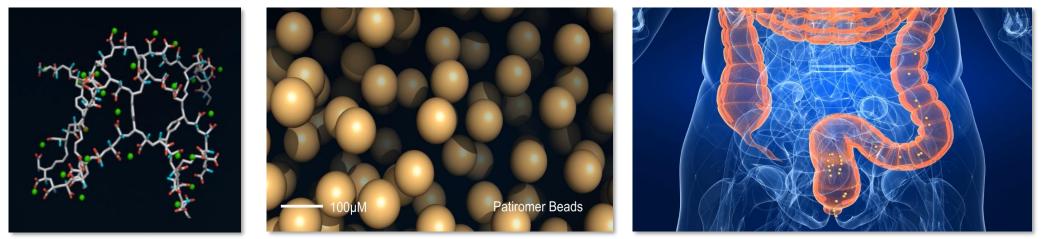

Comparison of Key Potassium Binders1

	ZS-9 ¹	SPS ¹	Patiromer ¹
Type of compound	Non-absorbed, insoluble inorganic crystal	Non-absorbed, organic polymer in a sorbitol base	Non-absorbed, organic polymer and sorbitol complex
Mechanism of action	Selective potassium binding in exchange for Na ⁺ and H ⁺	Non-specific cation binding in exchange for sodium	Non-specific cation binding in exchange for Ca ²⁺
Route of administration	Oral	Oral or rectal	Oral
Formulation	Oral suspension (Dissolvable tablet if FDA-approved ²)	Suspension in sorbitol or dissolvable powder	Oral suspension
Location of potassium binding	Entire intestinal tract	Colon	Distal colon predominantly

1. GarimellaPS, et al. Am J Kidney Disease 2016; Epub ahead of print; 2. Chaitman M et al. PT. 2016; 41(1): 43–50.

Sodium Polystyrene Sulfonate and Sodium Content

SPS Contains 9.4% sodium by weight (4.1 mEq/g)¹

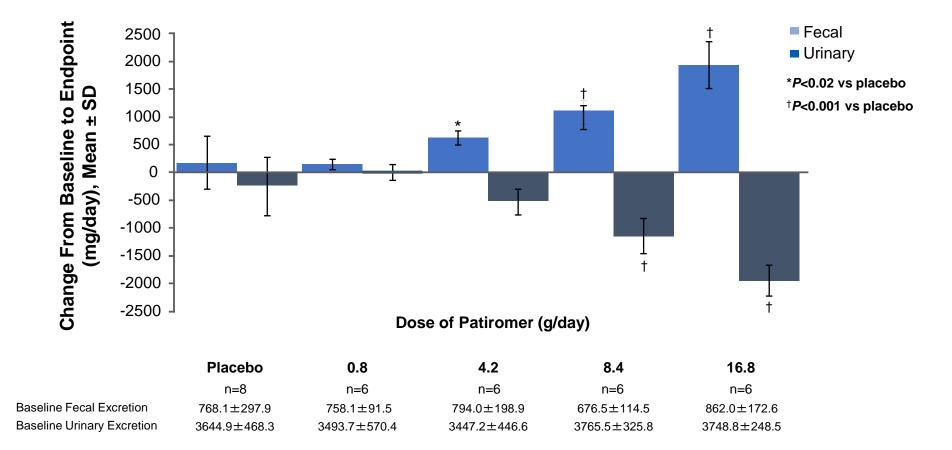

Since the in vivo efficiency of SPS is about 33%, approximately 1/3 of the resin's actual sodium content is being delivered to the body¹

SPS dosing may use up a sizable portion of a sodium-restricted patient's daily sodium allowance

- 1. Kayexelate [package insert]. Bridgewater, NJ: Sanofi-Aventis; 2010.
- 2. Whelton P, et al. Circulation. 2012;126:2880-2889.
- 3. KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. *Kidney Int Suppl*. 2013;3(1).
- 4. Aronow WS, et al. Circulation. 2011;123:2434 -2506.

Patiromer Is a Novel, Sperical, Non-absorbed K⁺ Binder

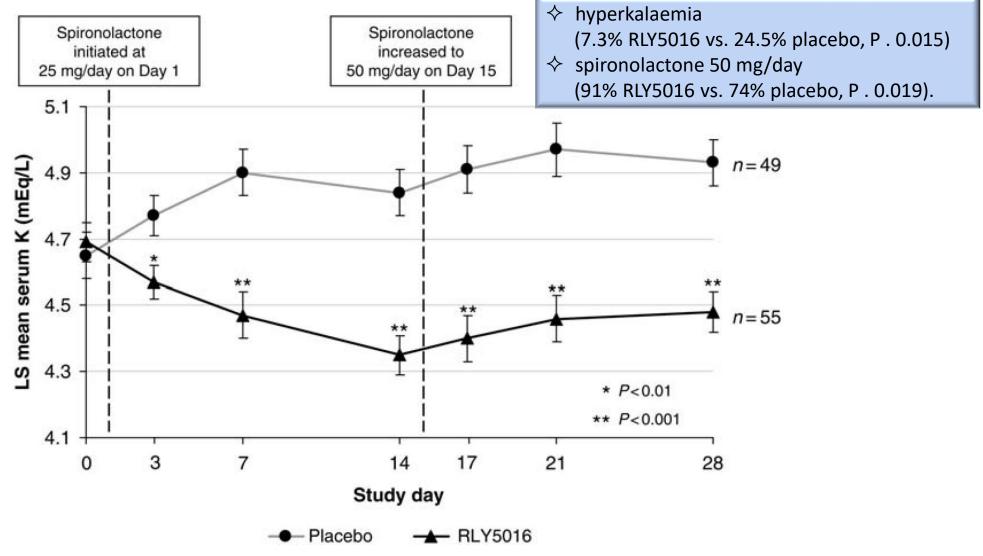
- ➤ High-capacity K⁺ binder
- Average bead size (100 μM) is too large for patiromer to be absorbed from the gastrointestinal tract, enabling patiromer to be passed through the entire GI tract and absorb more K⁺
- > Uniform spherical shape, size, and low-swelling beads ratio


High-capacity polymer

Uniform, spherical patiromer beads

Patiromer travels through the gastointestinal tract over 24-72 hours

Patiromer is fully ionized at the physiologic pH of the colon for optimal ion exchange. Carboxylate groups of patiromer bind to K⁺, which is primarily in the colon due to upregulation of BK channels in colonic epithelial cells. Patiromer beads are excreted, leading to removal of excess K⁺ and reduction of serum K⁺ levels. Ca²⁺ is exchanged for K⁺


Patiromer Increases Fecal and Decreases Urinary K⁺ Excretion in Healthy Volunteers

SD: standard deviation.

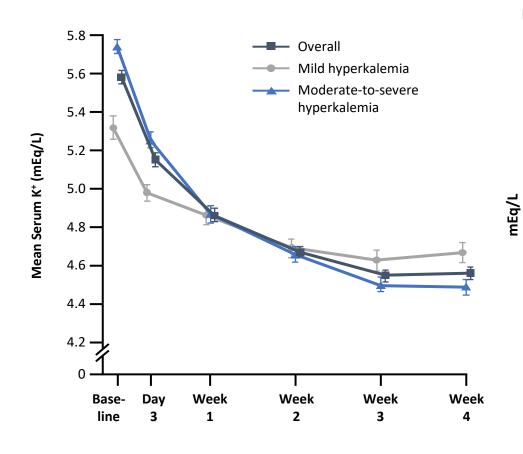
Li L, et al. J Cardiovasc Pharmacol Ther. 2016;doi:10.1177/1074248416629549.

Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with **chronic heart failure (the PEARL-HF)** trial

Pitt B et al. European Heart Journal (2011) 32, 820–828

OPAL-HK Part A: Primary and Secondary Efficacy Endpoints

-0.4


-0.6-

-0.8-

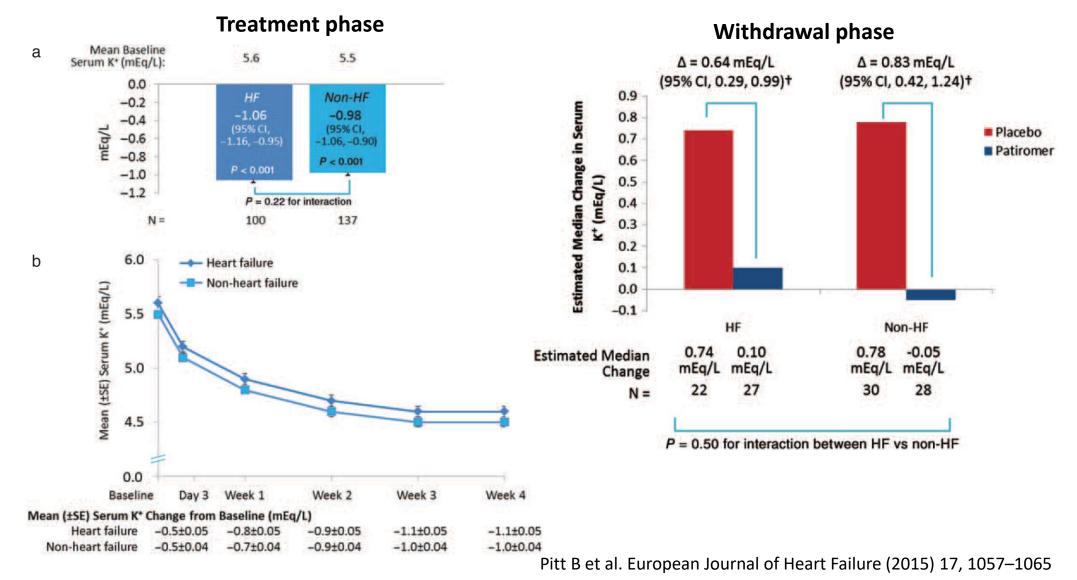
-1.0-

-1.2-

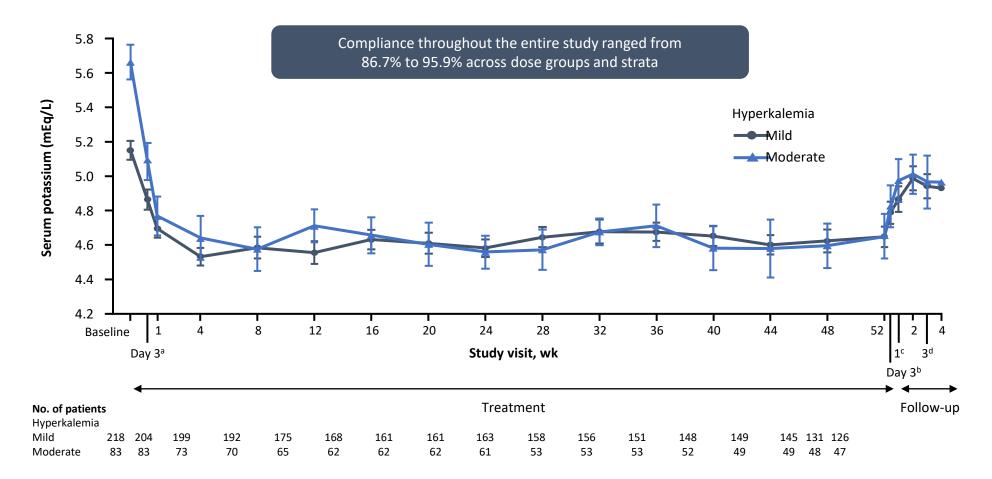
-1.4 -

Primary efficacy endpoint:mean change from baseline to Week 4 (all subjects)Milk HKMod/Severe HKAll subjects0.0-0.65-1.23-1.01-0.2-0.65-1.23-1.01(95% Cl)(95% Cl)(95% Cl)-0.2-0.74, -0.55)-1.31, -1.16)

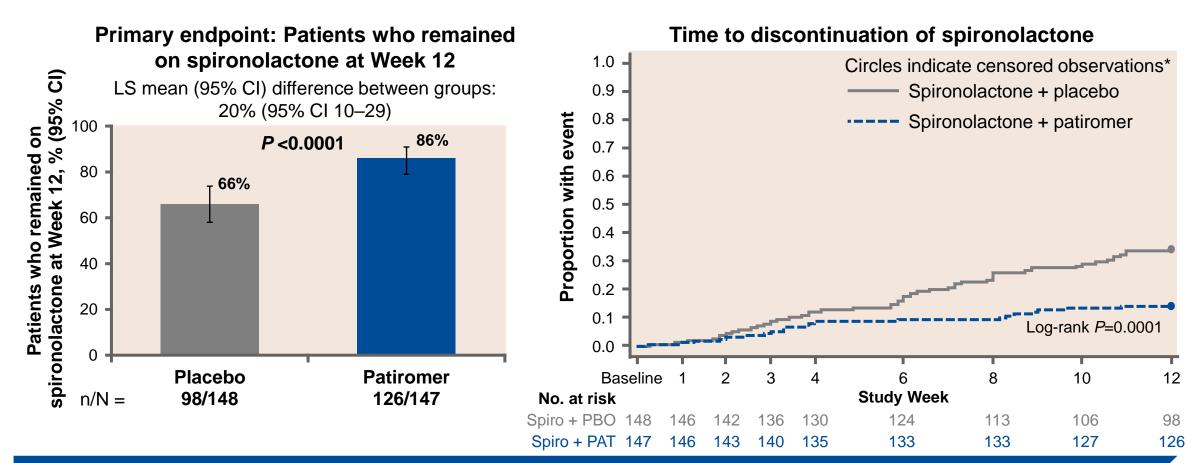
HK; hyperkalemia.


Secondary Efficacy Endpoint: 76% of subjects had serum K⁺ in the target range (3.8 to <5.1 mEq/L) at week 4

Weir MR, et al. N Engl J Med. 2015;372(3):211-221.


p<0.001

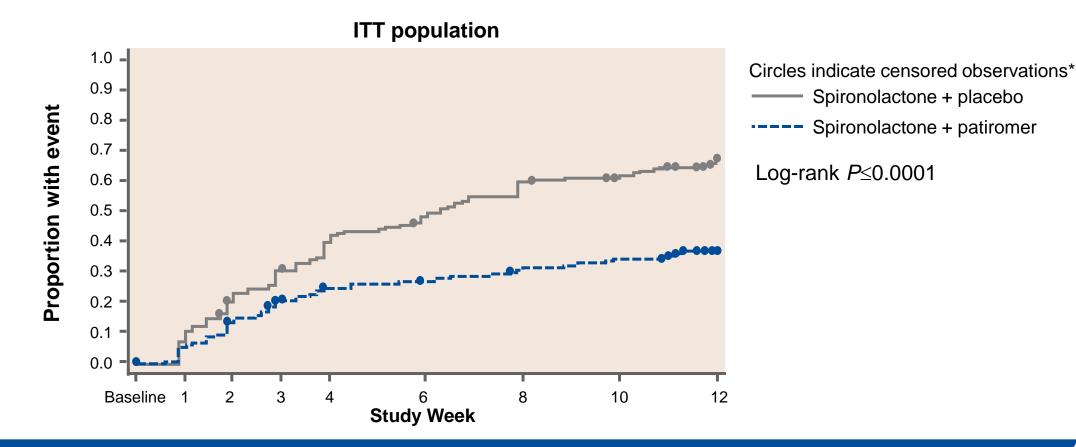
Effect of patiromer on reducing serum K+ and preventing recurrent hyperkalaemia in patients with HF and CKD on RAAS inhibitors: OPAL-



Effect of Patiromer on Serum Potassium Level in Patients With Hyperkalemia and Diabetic Kidney Disease: The AMETHYST-DN Randomized Clinical Trial

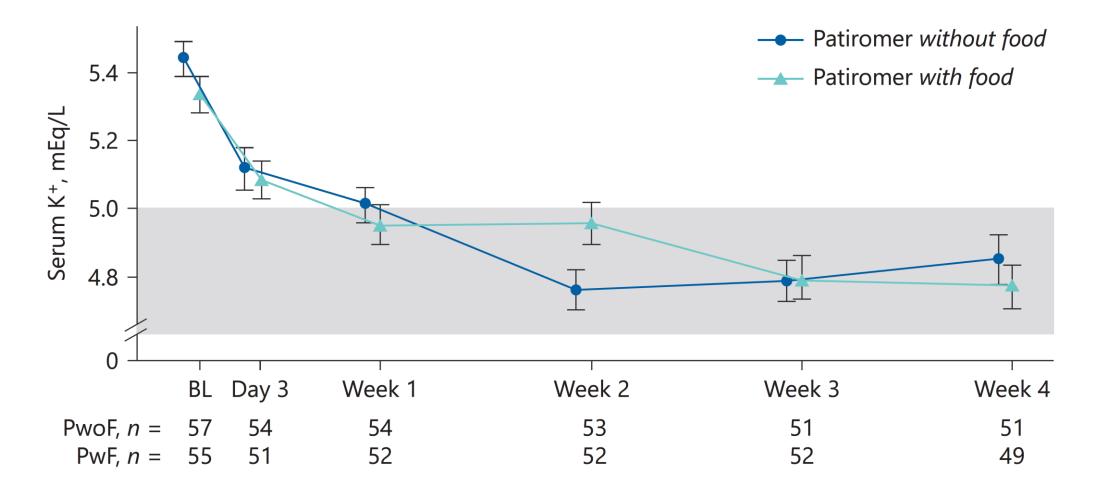
All serum K⁺ analyses are based on central lab values; 3 patients (2 with mild HK and 1 with moderate HK) did not have a central lab serum K⁺ value at baseline and therefore are not included in the analysis at this timepoint. *At all timepoints, *P*<0.001 (2-sided *t*-test) for least-squares mean changes from baseline and week 52 (or from last dose of patiromer received during the study).

AMBER KEY RESULTS: ITT POPULATION

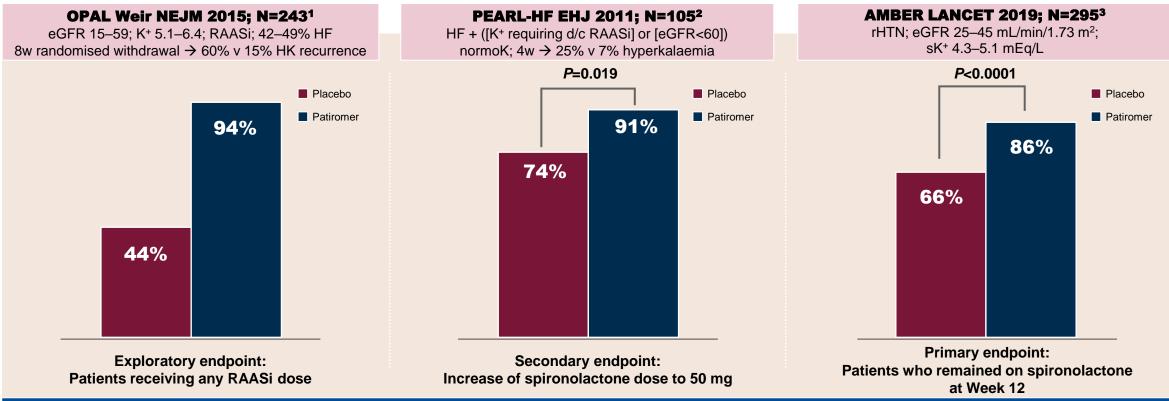

In advanced CKD with resistant hypertension, patiromer enables more persistent use of spironolactone

*Patients who completed 12 weeks of study treatment and had not had any event are censored at Week 12.

Cl, confidence interval; CKD, chronic kidney disease; ITT, intention-to-treat; LS, least squares; PAT, patiromer; PBO, placebo; spiro, spironolactone.


Agarwal R, et al. Lancet. 2019;394:1540-50.

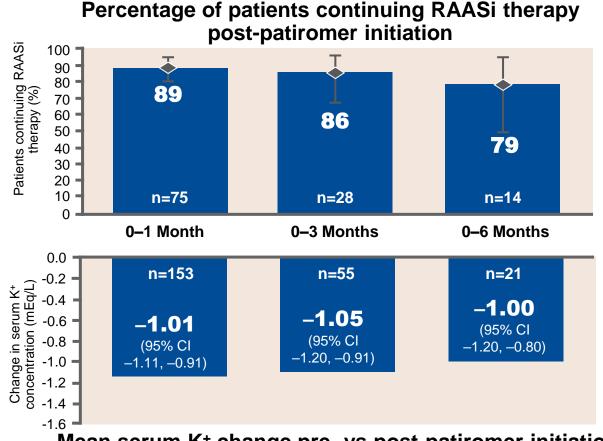
AMBER: TIME TO SERUM K⁺ ≥5.5 MEQ/L


Among patients treated with placebo, 2 out of 3 developed hyperkalaemia Patiromer reduced this risk by half

*Patients who did not have any event are censored on the last date with serum K⁺ assessment. ITT, intention-to-treat; K⁺, potassium. Agarwal R, *et al. Lancet.* 2019;394:1540–50. Patiromer is equally effective and well tolerated when taken without food or with food: TOURMALINE study

Pergola PE et al. Am J Nephrol 2017;46:323–332

PATIROMER HAS DEMONSTRATED THE **ABILITY TO ENABLE RAASI** IN PLACEBO-CONTROLLED RANDOMISED CLINICAL TRIALS



Patiromer enabled substantially more patients to:

- Remain on their RAASi medications at the end of the study, compared with those given placebo¹
- Initiate and up-titrate spironolactone in patients with HF and advanced CKD with rHTN^{2,3}

CKD, chronic kidney disease; d/c, discontinuation; eGFR, estimated glomerular filtration rate; HF, heart failure; HK, hyperkalaemia; K⁺, potassium; normoK, normokalaemia; RAASi, renin–angiotensin–aldosterone system inhibitor; rHTN, resistant hypertension; sK⁺, serum potassium. 1. Weir MR, et al. N Engl J Med. 2015;372:211–21; 2. Pitt B, et al. Eur Heart J. 2011;32:820–8. 3. Agarwal R, et al. Lancet. 2019;394:1540–50.

REAL-WORLD MANAGEMENT OF HYPERKALAEMIA WITH PATIROMER IS ASSOCIATED WITH HIGH RATES OF RAASI CONTINUATION

Mean serum K⁺ change pre- vs post-patiromer initiation

CI, confidence interval; K⁺, potassium; US, united states; RAASi, renin-angiotensin-aldosterone system inhibitor. Kovesdy CP, et al. Postgrad Med. 2020;132:176–83.

Study

A retrospective, observational cohort study of 288 US Veterans with hyperkalaemia ($K^+ \ge 5.1 \text{ mEq/L}$)

Objective

To evaluate patiromer utilisation, RAASi continuation and serum K⁺ levels post-patiromer initiation

Findings

- K⁺ concentration reductions post-patiromer initiation averaged –1.0 mEq/L (P<0.001)
- Through 6 months post index, RAASi therapy was continued in ~80% of patients treated with patiromer

PATIROMER: SAFETY AND TOLERABILITY PROFILE

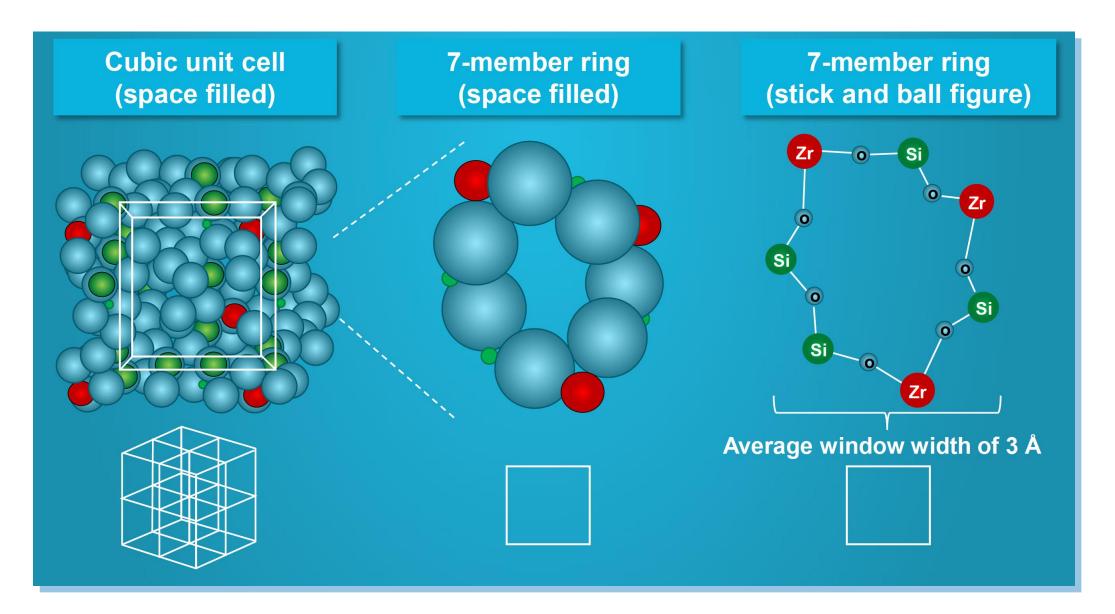
Summary of the safety profile

- Most AEs reported from trials were GI disorders, with constipation (6.2%), hypomagnesaemia (5.3%), diarrhoea (3%), abdominal pain (2.9%) and flatulence (1.8%) being the most common
- Most frequently reported GI-related AEs were generally mild-to-moderate in nature, did not appear to be dose-related, generally resolved spontaneously or with treatment, and none was reported as serious

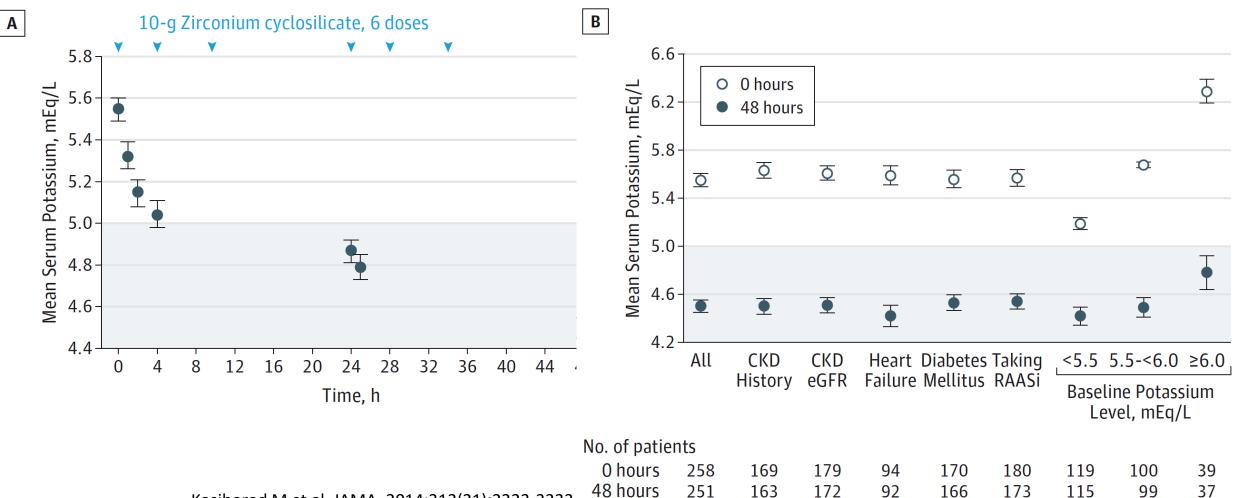
Hypomagnesaemia

 Hypomagnesaemia was mild-to-moderate, with no patient developing a serum magnesium level <1 mg/dL (0.4 mEq/L). Serum magnesium should be monitored for at least 1 month after initiating treatment, and magnesium supplementation considered in patients who develop low serum magnesium levels

Interactions

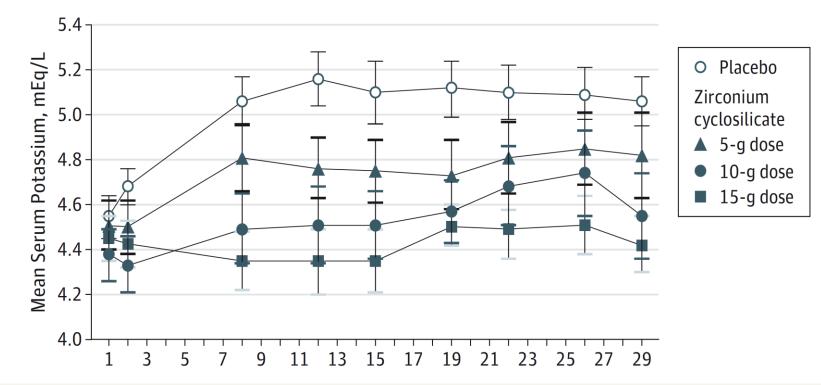

- Patiromer has the potential to bind some oral co-administered medications, which could decrease their GI absorption
- As a precautionary measure, administration of patiromer should be separated by at least 3 hours from other oral medications

AE, adverse event; GI, gastrointestinal. Patiromer EU Summary of Product Characteristics, 2019.


LIST OF ADVERSE REACTIONS IN CLINICAL STUDIES

System Organ Class	Common	Uncommon				
Metabolism and nutrition disorders	Hypomagnesaemia					
Gastrointestinal disorders	Constipation Diarrhoea Abdominal pain Flatulence	Nausea Vomiting				

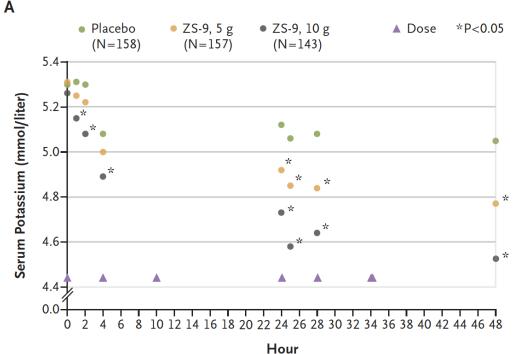
Characterization of structure and function of ZS-9, a K⁺ selective ion trap

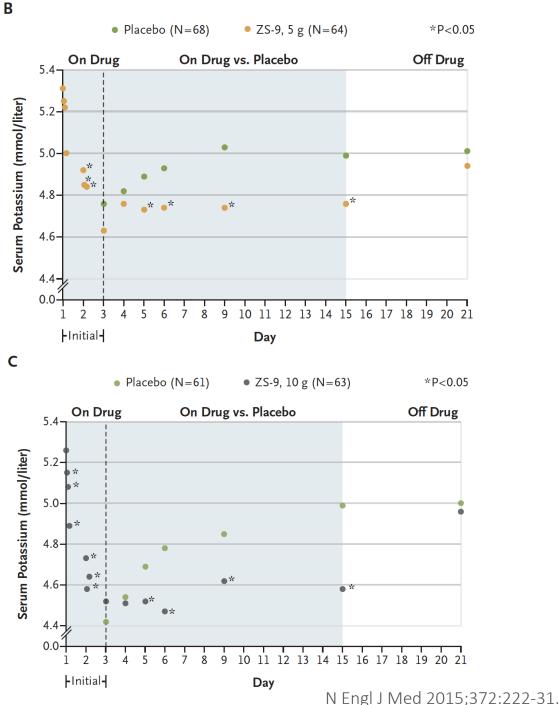


Effect of Sodium Zirconium Cyclosilicate on Potassium Lowering for 28 Days Among Outpatients With Hyperkalemia The HARMONIZE Randomized Clinical Trial

Kosiborod M et al. JAMA. 2014;312(21):2223-2233.

Effect of Sodium Zirconium Cyclosilicate on Potassium Lowering for 28 Days Among Outpatients With Hyperkalemia The HARMONIZE Randomized Clinical Trial


Comorbidities, No. (%)	Open label	placebo	5 g	10 g	15 g
Chronic kidney disease	169 (65.5)	50 (58.8)	29 (64.4)	36 (70.6)	37 (66.1)
Heart failure	94 (36.4)	26 (30.6)	18 (40.0)	18 (35.3)	25 (44.6)
Diabetes mellitus	170 (65.9)	54 (63.5)	26 (57.8)	38 (74.5)	39 (69.6)
RAASi medication, No. (%)	180 (69.8)	61 (71.8)	33 (73.3)	36 (70.6)	33 (58.9)


Kosiborod M et al. JAMA. 2014;312(21):2223-2233.

ORIGINAL ARTICLE

Sodium Zirconium Cyclosilicate in Hyperkalemia

David K. Packham, M.B., B.S., M.D., Henrik S. Rasmussen, M.D., Ph.D., Philip T. Lavin, Ph.D., Mohamed A. El-Shahawy, M.D., M.P.H., Simon D. Roger, M.D., Geoffrey Block, M.D., Wajeh Qunibi, M.D., Pablo Pergola, M.D., Ph.D., and Bhupinder Singh, M.D.

Current Therapeutic Research 95 (2021) 100635

Contents lists available at ScienceDirect
Current Therapeutic Research
journal homepage: www.elsevier.com/locate/curtheres

Patiromer and Sodium Zirconium Cyclosilicate in Treatment of Hyperkalemia: A Systematic Review and Meta-Analysis

Check for updates

CITE

Dhan Bahadur Shrestha, MD Resident Physician^{1,*}, Pravash Budhathoki, MD Resident Physician², Yub Raj Sedhai, MD³, Ramkaji Baniya, MD⁴, Casey A. Cable, MD, MSc⁵, Markos G. Kashiouris, MD, MPH⁵, Dave L. Dixon, PharmD⁶, Jason M. Kidd, MD⁷, Yuvraj Adhikari, MBBS⁸, Anupama Marasini, MBBS⁸, Shakar Bhandari, MBBS⁸

	Patrirom	ner	Placeb	0		Odds Ratio	Odds Ratio		SZC-10	0	Placebo	0		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	Study or Subgroup	Events	Total I	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
1.1.1 Any Adverse effects								2.1.1 Any Adverse effects							
Agarwal R et al 2019 (AMBER)	82	147	79	148	58.0%	1.10 [0.70, 1.74]	-	Anker SD et al 2015	7	18	9	26	8.0%	1.20 [0.35, 4.18]	
Pitt B et al 2011 (PEARL-HF)	30	56	15	49	12.4%	2.62 [1.17, 5.84]		Ash SR et al 2015	8	24	3	30	3.2%	4.50 [1.04, 19.45]	
Rafique Z et al 2020	4	15	5	15	6.1%	0.73 [0.15, 3.49]		Fishbane S et al 2019 (DIALIZE) (1)	40	97	46	99	47.5%	0.81 [0.46, 1.42]	-
Weir MR et al 2014 (OPAL-HK) (1)	26	55	26		23.5%	0.90 [0.42, 1.91]		Packham DK et al 2014 (2)	21	63	15	61	18.0%	1.53 [0.70, 3.36]	+-
Subtotal (95% CI)		273		264	100.0%	1.22 [0.87, 1.71]	•	Peacock WF et al 2020 (ENERGIZE) (3)	14	29	12	33	10.3%	1.63 [0.59, 4.51]	
Total events	142		125					Zannad F et al 2020 (HARMONIZE) Subtotal (95% CI)	44	99 330	10	50	13.1% 100.0%	3.20 [1.44, 7.11] 1.49 [1.06, 2.08]	
Heterogeneity: Chi ² = 4.70, df = 3 (P		= 36%						, <i>,</i>	101	330	95	299	100.0%	1.49 [1.06, 2.06]	•
Test for overall effect: Z = 1.14 (P = 0).26)							Total events Heterogeneity: Chi ² = 10.35, df = 5 (P = 0	134	w.	90				
								Test for overall effect: Z = 2.31 (P = 0.02)		70					
1.1.2 Any Serious Adverse effects							_	reactor overall effect. 2 = 2.51 (P = 0.02)							
Agarwal R et al 2019 (AMBER)	1	147	4	148	52.5%	0.25 [0.03, 2.23]		2.1.2 Any Serious Adverse effects							
Pitt B et al 2011 (PEARL-HF)	2	56	2		27.3%	0.87 [0.12, 6.42]		Fishbane S et al 2019 (DIALIZE)	7	97	8	99	57.3%	0.88 [0.31, 2.54]	
Weir MR et al 2014 (OPAL-HK)	0	55 258	1		20.2%	0.31 [0.01, 7.76]		Peacock WF et al 2020 (ENERGIZE)	3	29	5	33	32.7%	0.65 [0.14, 2.98]	
Subtotal (95% CI)		238		249	100.0%	0.43 [0.12, 1.56]		Zannad F et al 2020 (HARMONIZE)	3	99	1	50	10.0%	1.53 [0.16, 15.11]	
Total events	3		7					Subtotal (95% CI)		225			100.0%	0.87 [0.39, 1.94]	•
Heterogeneity: Chi ² = 0.76, df = 2 (P		= 0%						Total events	13		14				
Test for overall effect: Z = 1.28 (P = 0).20)							Heterogeneity: Chi ² = 0.38, df = 2 (P = 0.8	33); l ² = 0%						
1.1.3 Drug discontinuation due to A	A durance of	feet						Test for overall effect: Z = 0.34 (P = 0.74)							
							_								
Agarwal R et al 2019 (AMBER)	10	147	21	148	86.8%	0.44 [0.20, 0.97]	-	2.1.3 Drug discontinuation due to Adve	erse effects						
Pitt B et al 2011 (PEARL-HF)	4	56 203	3		13.2%	1.18 [0.25, 5.55]		Fishbane S et al 2019 (DIALIZE)	4	97	2	99	33.9%	2.09 [0.37, 11.66]	
Subtotal (95% CI)		203		197	100.0%	0.54 [0.27, 1.08]		Zannad F et al 2020 (HARMONIZE)	7	99	3	50	66.1%	1.19 [0.29, 4.82]	
Total events	14		24					Subtotal (95% CI)		196		149	100.0%	1.49 [0.50, 4.43]	-
Heterogeneity: Chi ² = 1.23, df = 1 (P		= 19%						Total events	11		5				
Test for overall effect: Z = 1.75 (P = 0	0.08)							Heterogeneity: Chi ² = 0.24, df = 1 (P = 0.6							
						L		Test for overall effect: Z = 0.73 (P = 0.47)							
						0.	1 0.1 1 10 1	00							
Test for subgroup differences: Chi ² =							Patiromer Placebo								0.01 0.1 1 10 100
				BB 7%											SZC-10 Placebo

Test for subgroup differences: Chi² = 1.47, df = 2 (P = 0.48), I² = 0%

Current Therapeutic Research 95 (2021) 100635

Contents lists available at ScienceDirect
Current Therapeutic Research
journal homepage: www.elsevier.com/locate/curtheres

Patiromer and Sodium Zirconium Cyclosilicate in Treatment of Hyperkalemia: A Systematic Review and Meta-Analysis

Check for updates

- Gra

Dhan Bahadur Shrestha, MD Resident Physician^{1,*}, Pravash Budhathoki, MD Resident Physician², Yub Raj Sedhai, MD³, Ramkaji Baniya, MD⁴, Casey A. Cable, MD, MSc⁵, Markos G. Kashiouris, MD, MPH⁵, Dave L. Dixon, PharmD⁶, Jason M. Kidd, MD⁷, Yuvraj Adhikari, MBBS⁸, Anupama Marasini, MBBS⁸, Shakar Bhandari, MBBS⁸

Study or Subgroup	Patriror Events		Placeb Events	-	Weight	Odds Ratio M-H, Random, 95% C	3	Odds M-H, Rand	Ratio om, 95% CI	Study or Subaroup	SZC-1 Events		Placeb Events		Weight	Odds Ratio M-H. Random, 95% 0		ds Ratio ndom, 95% Cl	
1.3.1 Overall GI adverse effects										2.3.1 Nausea									
Agarwal R et al 2019 (AMBER)	24	147	24		42.6%	1.01 [0.54, 1.87]			_	Ash SR et al 2015	2	24	1	30	36.4%	2.64 [0.22, 30.97]		-	
Pitt B et al 2011 (PEARL-HF) Rafigue Z et al 2020	12	56 15	3	49 15	29.9% 15.1%	4.18 [1.10, 15.83] 0.46 [0.04, 5.75]				Peacock WF et al 2020 (ENERGIZE)	3	29	2	33		1.79 [0.28, 11.53]			
Weir MR et al 2014 (OPAL-HK) (1)	6	55	0	52	12.3%	13.79 [0.76, 251.22]			· · · · ·	Subtotal (95% CI) Total events		53	3	03	100.0%	2.06 [0.47, 9.11]			
Subtotal (95% CI)	0	273	v		100.0%	1.90 [0.58, 6.19]		-		Heterogeneity: Tau ² = 0.00; Chi ² = 0.06	C 1/D	- 0.91							
Total events	43		29							Test for overall effect: Z = 0.95 (P = 0.3		- 0.01)	,1 - 070						
Heterogeneity: Tau ² = 0.76; Chi ² = 6.		(P = 0.0)7); l ² = 57	7%							,								
Test for overall effect: Z = 1.06 (P = 0	0.29)									2.3.3 Diarrhoea									
1.3.2 Headache								-		Ash SR et al 2015	1	24	0	30	11.1%	3.89 [0.15, 99.97]		_	
Agarwal R et al 2019 (AMBER)	9	147	11	148	78.5%	0.81 [0.33, 2.02]		_	-	Fishbane S et al 2019 (DIALIZE)	4	97	6	99		0.67 [0.18, 2.44]			
Weir MR et al 2014 (OPAL-HK)	2		4		21.5%	0.45 [0.08, 2.58]				Zannad F et al 2020 (HARMONIZE) Subtotal (95% CI)	2	99 220	1	50	19.8%	1.01 [0.09, 11.42] 0.88 [0.30, 2.59]			
Subtotal (95% CI)		202		200	100.0%	0.72 [0.32, 1.61]		-		Total events	7	220	7	1/9	100.0%	0.00 [0.30, 2.39]			
Total events Heterogeneity: Tau ² = 0.00; Chi ² = 0.1	11	(D - 0 F	15							Heterogeneity: Tau ² = 0.00; Chi ² = 1.00	df = 2/P	- 0.61)	12 = 0%						
Test for overall effect: Z = 0.81 (P = 0.		(P = 0.5	(0); I ² = 07	No.						Test for overall effect: Z = 0.23 (P = 0.8		- 0.01)	,1 - 0 /0						
											,								
1.3.3 Diarrohea										2.3.4 Constipation									
Agarwal R et al 2019 (AMBER)	9		8		77.8%	1.14 [0.43, 3.04]		_		Fishbane S et al 2019 (DIALIZE)	4	97	3	99		1.38 [0.30, 6.32]			
Pitt B et al 2011 (PEARL-HF)	3		1	49	14.2%	2.72 [0.27, 27.01]			· · · ·	Zannad F et al 2020 (HARMONIZE)	9	99	0	50		10.60 [0.60, 185.98]			
Weir MR et al 2014 (OPAL-HK) Subtotal (95% CI)	2	55 258	0	52 249	8.0% 100.0%	4.91 [0.23, 104.66] 1.45 [0.61, 3.45]				Subtotal (95% CI)		196	-	149	100.0%	2.75 [0.36, 20.91]			
Total events	14		9		1001010	true ferent errel				Total events Heterogeneity: Tau ² = 1.02; Chi ² = 1.74	13	- 0.10	3	,					
Heterogeneity: Tau ² = 0.00; Chi ² = 1.	14, df = 2	(P = 0.5	7); l ² = 09	6						Test for overall effect: Z = 0.98 (P = 0.3		= 0.19)	; I* = 437	9					
Test for overall effect: Z = 0.84 (P = 0	0.40)									reaction over all effects 2 = 0.00 (F = 0.0	33)								
1.3.4 Constipation										2.3.5 Headache									
Pitt B et al 2011 (PEARL-HF)	2	56	0	49	51.2%	6.48 [0.33, 128.57]				Ash SR et al 2015	0	24	1	30		0.40 [0.02, 10.30]	·		
Weir MR et al 2014 (OPAL-HK)	2		0		48.8%	4.91 [0.23, 104.66]				Fishbane S et al 2019 (DIALIZE)	3		2			1.55 [0.25, 9.47]			
Subtotal (95% CI)	-	111			100.0%	5.66 [0.67, 47.97]		-		Subtotal (95% CI)		121		129	100.0%	1.12 [0.23, 5.46]			
Total events	5		0							Total events	3		3						
Heterogeneity: Tau ² = 0.00; Chi ² = 0.		(P = 0.9	10); I ² = 0%	Ke						Heterogeneity: Tau ^a = 0.00; Chi ^a = 0.51 Test for overall effect; Z = 0.14 (P = 0.8		= 0.48)	ç 1° = 0%						
Test for overall effect: Z = 1.59 (P = 0	0.11)									1631 IOF OVERAILENECK, Z = 0.14 (P = 0.0	001							1	
							—		<u> </u>										
							0.01	0.1 1 Patiromer	1 10 100 Placebo								<u> </u>	+ +	
Test for subgroup differences: Chi ² =	4.33, df =	3 (P = (0.23), I² =	30.7%				Fadromer	Flauebo								0.01 0.1	1 10	100
																	SZC-1	0 Placebo	

ALLEGATO

Piano terapeutico per la prescrizione dei K-binders La prescrivibilita' e' consentita a medici ospedalieri o specialisti nefrologo, cardiologo e internista Indicazione: trattamento dell'iperK negli adulti *Rimborsabilita' limitata* ai pazienti adulti con iperK persistente (K>5.5 mmol/L) con risposta insufficiente o controindicazione alle resine

CRITERI DI ELEGGIBILITÀ AL TRATTAMENTO (devono essere soddisfatti entrambi i punti 1 e 2)

 Diagnosi: Iperkaliemia persistente (livello di potassiemia >5.5mmol/L) in pazienti con risposta insufficiente o controindicazione alle resine (calcio polistirene sulfonato/sodio polistirene sulfonato).

Almeno una delle seguenti condizioni (possibilità di scelta multipla):

Insufficienza renale: stadio 3b-CKD in pazienti **con** concomitante terapia con RAASi Insufficienza renale: stadio 4 o 5-CKD **non in dialisi**, in pazienti **con o senza** concomitante terapia con RAASi

Insufficienza renale: stadio 5-CKD in dialisi (solo per sodio zirconio ciclosilicato)

□ Scompenso cardiaco (frazione di eiezione ≤40%) in pazienti con concomitante terapia con RAASi in dose giudicata subottimale.

Proprietà. farmacodinamiche e farmacocinetiche di patiromer e ciclosilicato di sodio e zirconio (SZC)

	SZC	Patiromer					
Meccanismo d'azione	Aumenta l'escrezione fecale di K+ Agisce legando il K+ già nel primo tratto gastrointestinale	Aumenta l'escrezione fecale di K+ Agisce legando il K+ nel tratto gastrointestinale, principalmente nel colon					
Assorbimento	Nessuno	Nessuno					
Eliminazione	Fecale	Fecale					
Forma	Polvere per sospensione orale solubile da miscelare con acqua: 5 g/bustina 10 g/bustina	Polvere per sospensione orale: 8.4 g/bustina 16.8 g/ bustina 25.2 g/bustina					
Dose	 Iniziale: 10 g tid per os per 48 h Mantenimento: 5 o 10 g/die per os La dose giornaliera può essere aggiustata con incrementi o decrementi di 5 g, con una dose minima di 5 g/die e una dose massima di 10 g/die La dose di mantenimento raccomandata è di 5-15 g/die, massimo 15 g/die solo per i pazienti dializzati 	Iniziale: 8.4 g/die per os Mantenimento: aumentare o ridurre la dose se necessario ma non superare 25.2 g/die La dose giornaliera può essere aggiustata ad intervalli di 1 settimana o di durata maggiore, con incrementi di 8.4 g Dosaggi superiori a 50.4 g/die non sono stati testati; dosaggi eccessivi possono provocare ipopotassiemia, nel qual caso devono essere ripristinati normali livelli sierici di K ⁺					
Effetti avversi	Edema (5.7%)* Ipopotassiemia (4.1%)	Stitichezza (7.2%) Ipomagnesiemia (5.3%) Diarrea (4.8%) Ipopotassiemia (4.7%) Nausea (2.3%) Dolori addominali (2%) Flatulenza (2%)					

*Gli eventi sono stati osservati solo durante la fase di mantenimento ed erano più comuni nei pazienti trattati con la dose di 15 g. Fino al 53% degli eventi è stato gestito tramite somministrazione di un diuretico o aggiustamento della dose di un diuretico; i restanti soggetti non hanno richiesto alcun trattamento.

ESC GUIDELINES

European Heart Journal (2021) 00, 1 42

2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: supplementary data

- In patients with chronic or recurrent hyperkalaemia on RAAS inhibitors therapy an approved K⁺-lowering agent may be initiated as soon as K⁺ levels are confirmed as >5.0 mEq/L. Closely monitor K⁺ levels. Maintain treatment unless alternative treatable aetiology is identified.
- In patients with chronic or recurrent hyperkalaemia not on maximal tolerated guideline-recommended target dose of RAAS inhibitors, an approved K⁺lowering agent may be initiated as soon as confirmed K⁺ levels are >5.0 mEq/L. Closely monitor K⁺ levels. Maintain treatment unless alternative treatable
 aetiology is identified. RAAS inhibitors should be optimized when K⁺ levels are <5.0 mEq/L.
- In patients with K⁺ levels of 4.5 5.0 mEq/L not on maximal tolerated, guideline-recommended target dose of RAAS inhibitor therapy, RAAS inhibitor therapy can be initiated/uptitrated with a close monitoring of K⁺ levels. If K⁺ levels rise above 5.0 mEq/L, initiate an approved K⁺-lowering agent.
- In patients with K⁺ levels of >5.0−≤6.5 mEq/L not on maximal tolerated, guideline-recommended target dose of RAAS inhibitor therapy, an approved K⁺-lowering agent should be initiated. If levels <5.0 mEq/L are detected, uptitrate RAAS inhibitor; K⁺ level should be closely monitored and K⁺-lowering treatment should be maintained unless another aetiology for hyperkalaemia is identified.
- In patients with K⁺ levels of >5.0−≤6.5 mEq/L on maximal tolerated, guideline-recommended target dose of RAAS inhibitor therapy, treatment with a K⁺-lowering agent may be initiated. K⁺ level should be closely monitored and K⁺-lowering treatment should be maintained unless alternative treatable aetiology for hyperkalaemia is identified.
- In patients with K⁺ levels of >6.5 mEq/L on either maximal or sub-maximal tolerated, guideline-recommended target dose of RAAS inhibitor therapy, it is recommended to discontinue/reduce RAAS inhibitor. Treatment with a K⁺-lowering agent may be initiated as soon as K⁺ levels >5.0 mEq/L. K⁺ level should be closely monitored.

- RAASi, including ACE inhibitors, ARBs and MRAs, are the cornerstone of therapy in heart failure and chronic kidney disease
 - RAASi are proven to reduce morbidity and mortality in patients with CVD, preserve kidney function in CKD and delay progression to ESKD
- RAASi are associated with a risk of hyperkalaemia