

Corso pre-congressuale L'ecografia toracica nell'anziano

Firenze, 13/12/2023

Diagnostica ecografica dello scompenso cardiaco e dell'edema polmonare acuto

Chukwuma Okoye

Università degli Studi di Milano-Bicocca PhD Fisiopatologia Clinica Cardio-Polmonare

DICHIARO

di avere avuto, negli ultimi due anni nessun rapporto commerciale o finanziario con soggetti portatori di interessi commerciali in campo sanitario Boeringer

- Prima e dopo
- Le sonde ecografiche
- Sindrome interstiziale e Linee B
- Caso clinico 1
- La valutazione ecografica integrato nello scompenso cardiaco

PRIMA

Sindrome interstiziale su RX

- C'è versamento?
 - «possibile»
- Quanto?
 - «Abbondante, modesto, lieve...»
- E' scompenso o ARDS?
 - «Da correlare con quadro clinico anamnestico»
- Monitoraggio del quadro clinico?
 - «Rimandamelo giù tra 2 giorni, possibilmente ACCOMPAGNATO»

DOPO (si spera...)

Sindrome interstiziale su RX

- C'è versamento?
 - Si / no /monolaterale, bilaterale
- Quanto?
 - Circa 1200 cc / PEFS 4/ oltre 3 spazi
- E' scompenso o ARDS?
 - Sindrome interstiziale su base cardiogena
- Monitoraggio del quadro clinico?
 - Rivalutazione al letto del paziente tra 24 ore, con integrazione di esami ematici e clinica

Interstiziopatia: QUALE SONDA UTILIZZARE?

Transducer type	Linear	Curvilinear	Phased array
	lisa I	P	
Frequency range	5–10 MHz	2–5 MHz	1–5 MHz
Imaging depth	9 cm	30 cm	35 cm
Footprint			
Image			
Applications	Arteries/veins Procedures Pleura Skin/soft tissues Musculoskeletal Testicles/hernia Eyes Breast	Gallbladder Liver Kidney Bladder Abdominal aorta Abdominal free fluid Uterus/ovaries	Heart Inferior vena cava Lungs Pleura Abdomen

Sindrome interstiziale polmonare

La sindrome alveolo-interstiziale polmonare comprende molte condizioni patologiche eterogenee che hanno in comune un diffuso coinvolgimento dell'interstizio con riduzione della capacità di scambio alveolo-capillare.

Tali condizioni sono sia croniche (la fibrosi polmonare) sia acute (l'ARDS, l'edema polmonare, la polmonite interstiziale).

Volpicelli et al. Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome, The American Journal of Emergency Medicine

Linee B (1)

The Comet-tail Artifact

An Ultrasound Sign of Alveolar-Interstitial Syndrome

DANIEL LICHTENSTEIN, GILBERT MÉZIÈRE, PHILIPPE BIDERMAN, AGNÈS GEPNER, and OLIVIER BARRÉ

Service de Réanimation Médicale and Service de Radiologie, Hôpital Ambroise-Paré, Boulogne (Paris), and Service de Réanimation Polyvalente, Centre Hospitalier Général, Saint-Cloud (Paris), France

Can ultrasound be of any help in the diagnosis of alveolar-interstitial syndrome? In a prospective study, we examined 250 consecutive patients in a medical intensive care unit: 121 patients with radiologic alveolar-interstitial syndrome (disseminated to the whole lung, n = 92; localized, n = 29) and 129 patients without radiologic evidence of alveolar-interstitial syndrome. The antero-lateral chest wall was examined using ultrasound. The ultrasonic feature of multiple comet-tail artifacts fanning out from the lung surface was investigated. This pattern was present all over the lung surface in 86 of 92 patients with diffuse alveolar-interstitial syndrome (sensitivity of 93.4%). It was absent or confined to the last lateral intercostal space in 120 of 129 patients with normal chest X-ray (specificity of 93.0%). Tomodensitometric correlations showed that the thickened sub-pleural interlobular septa, as well as ground-glass areas, two lesions present in acute pulmonary edema, were associated with the presence of the comet-tail artifact. In conclusion, presence of the comet-tail artifact allowed diagnosis of alveolar-interstitial syndrome. Lichtenstein D, Mézière G, Biderman P, Gepner A, Barré O. The comet-tail artifact: an ultrasound sign of alveolar-interstitial syndrome.

AM J RESPIR CRIT CARE MED 1997;156:1640-1646.

Linee B (1)

Lichstenstein D, The comet-tail artifact: an ultrasound sign of alveolar-interstitial syndrome. AM J Respir Crit Care Med 1997.

250 pazienti ricoverati in UTI

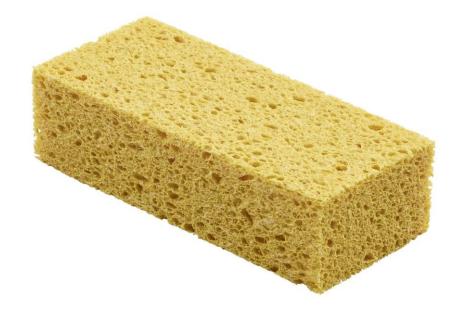
121 **CON** evidenza radiologica di sindrome interstiziale

89 pazienti su 92 avevano linee B diffuse SENSIBILITA' 93%

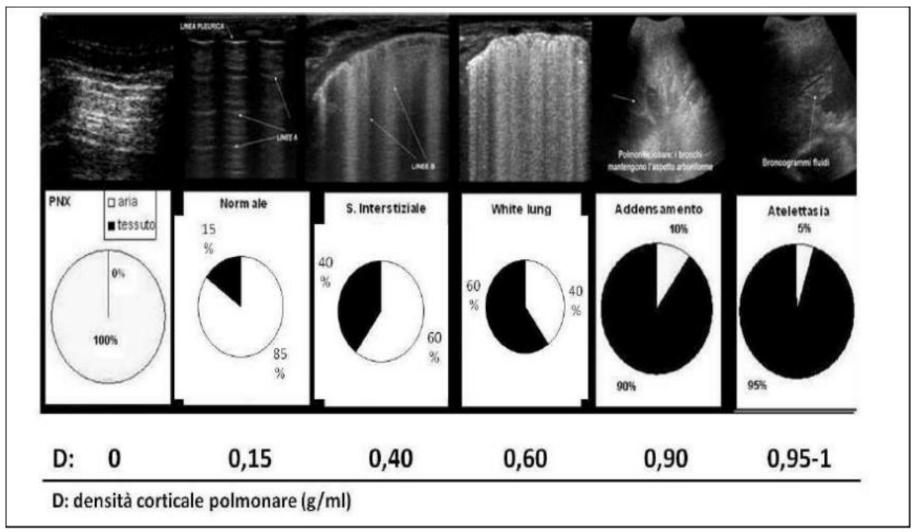
Al controllo TC:

- Ispessimento dei setti interlobulari subpleurici
- Lesioni a vetro smerigliato

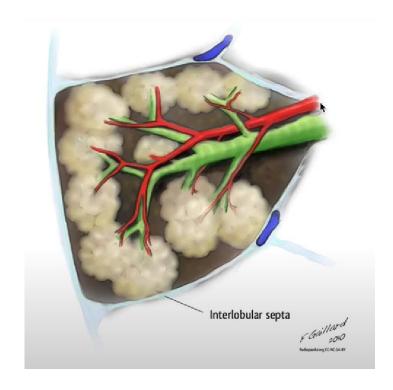
129 pazienti **SENZA** evidenza radiologica di sindrome interstiziale

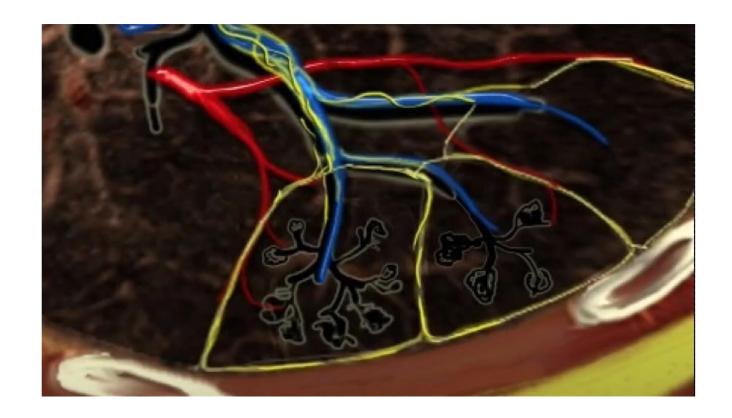

Solo 9 su 129 pazienti avevano linee B SPECIFICITA' 93%

Linee B (3)


Le linee B sono l'epifenomeno dell'aumentata densità del polmone sottopleurico. Un aumento di densità si può avere per aumento del peso del tessuto (interstizio) o per riduzione del volume (componente aerea) o per combinazione dei due meccanismi

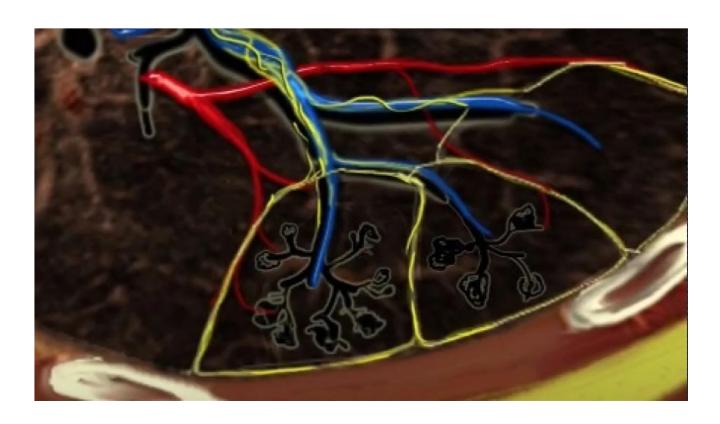
Linee B (3)



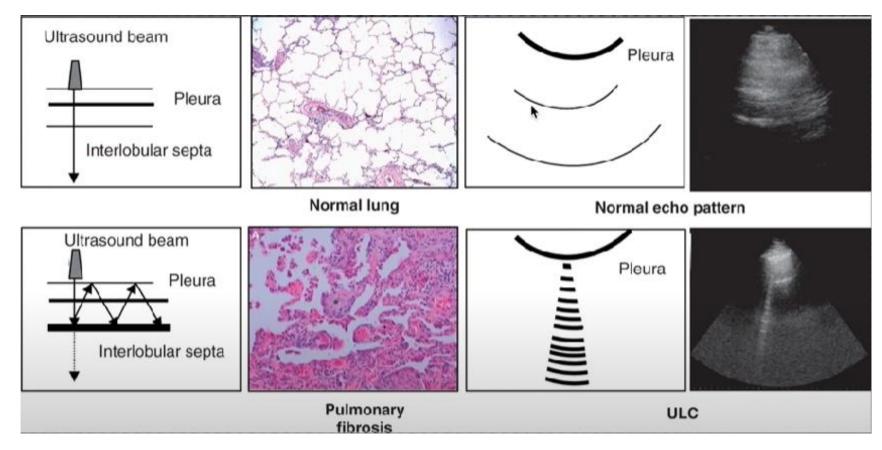


sindrome interstiziopatica polmonare

Lobulo polmonare secondario

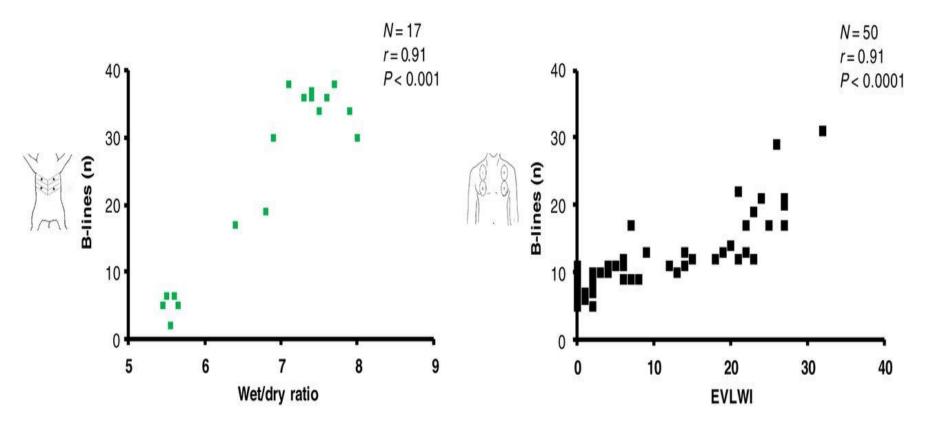


sindrome interstiziopatica polmonare

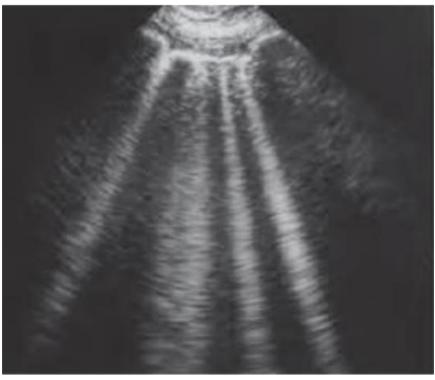


Silva Cl. JBP 2010 38(1)99:256

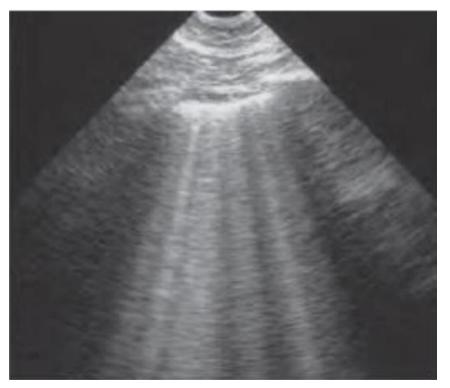
Sindrome interstiziopatia polmonare


Gargani et al. Reumatology 2009;48:1382-1387

Valutazione integrata nel paziente scompensato

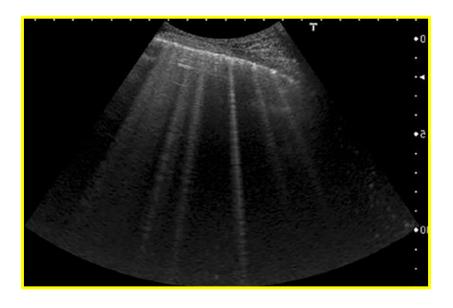


Eur Heart J, Volume 37, Issue 27, 14 July 2016, Pages 2097–2104, https://doi.org/10.1093/eurheartj/ehw164



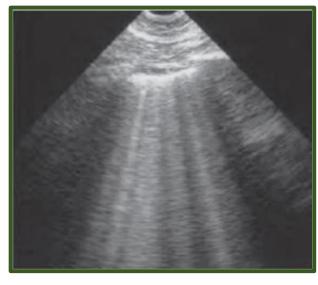
Linee B (4)

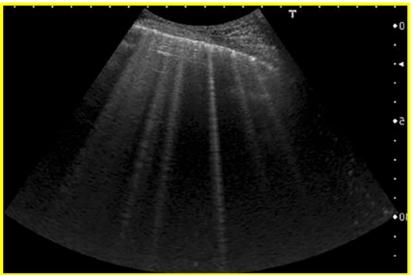
Three/four B lines between two ribs are called **septal-rockets**, correlating with thickened subpleural interlobular septa



Five B lines or more are called **glass rockets**, correlating with CT **ground-glass opacities**, indicating, severe interstitial syndrome. The label coalescent B lines, twice as long to say, is less descriptive.

Linee B (4)





	ADHF	ILD o polmonite atipiche	ARDS	FIBROSI
Aspetto delle Linee B	Fini>>> Coalescenti	Fini	Coalescenti	Fini
Distribuzione	Diffuse con andamento gravitazionale	Diffuse senza a.g. Multifocali>>F ocali con aree di risparmio	Diffuse senza a.g/ con aree di risparmio	Sparse con aree di risparmio
Simmetria	Bilaterali	Monolaterali /Bilaterali	Bilaterali	Asimmetriche
Linea pleurica	Linea pleurica sottile	Linea pleurica frastagliata	Linea pleurica frastagliata con nodularità	Linea pleurica frastagliata con nodularità e placche
Versamento pleurico	Associate a versamento pleurico	Non associate a versamento pleurico	Non associate a versamento pleurico	Non associate a versamento pleurico

Linee B (4)

Okoye et al. BMC Geriatrics (2022) 22:166 https://doi.org/10.1186/s12877-022-02837-7

BMC Geriatrics

RESEARCH Open Access

Computed tomography findings and prognosis in older COVID-19 patients

Chukwuma Okoye¹, Panaiotis Finamore^{2*}, Giuseppe Bellelli³, Alessandra Coin⁴, Susanna Del Signore⁵, Stefano Fumagalli⁶, Pietro Gareri⁷, Alba Malara⁸, Enrico Mossello⁶, Caterina Trevisan⁴, Stefano Volpato⁹, Gianluca Zia⁵, Fabio Monzani¹ and Raffaele Antonelli Incalzi²

Abstract

Background: In older and multimorbid patients, chronic conditions may affect the prognostic validity of computed tomography (CT) findings in COVID-19. This study aims at assessing to which extent CT findings have prognostic implications in COVID-19 older patients.

Methods: Hospitalized COVID-19 patients aged 60 years or more enrolled in the multicenter, observational and longitudinal GeroCovid study who underwent chest CT were included. Patients were stratified by tertiles of age and pneumonia severity to compare CT findings. Hierarchical clustering based on CT findings was performed to identify CT-related classificatory constructs, if any. The hazard ratio (HR) of mortality was calculated for individual CT findings and for clusters, after adjusting for potential confounders.

Results: 380 hospitalized COVID-19 patients, with a mean age of 78 (SD:9) years, underwent chest CT scan. Ground glass opacity (GGO), consolidation, and pleural effusion were the three most common CT findings, with GGO prevalence decreasing from younger to older patients and pleural effusion increasing. More severe the pneumonia more prevalent were GGO, consolidation and pleural effusion. HR of mortality was 1.94 (95%CI 1.24–3.06) for pleural effusion and 13 (95%CI 6.41–27) for cluster with a low prevalence of GGO and a high prevalence of pleural effusion ("LH"),

respectively. Out of the three CT based clusters, LH was the only independent predictor in the multivariable model.

Conclusions: Pleural effusion qualifies as a distinctive prognostic marker in older COVID-19 patients. Research is needed to verify whether pleural effusion reflects COVID-19 severity or a coexisting chronic condition making the patient at special risk of death.

Irial registration: Clinical Irials.gov: NC 1043/9440

Keywords: SARS-CoV-2, Oldest, Old, Tomography, X-ray computed, Pleural

Valutazione integrata nel paziente scompensato

0	ESC
	European Society of Cardiology

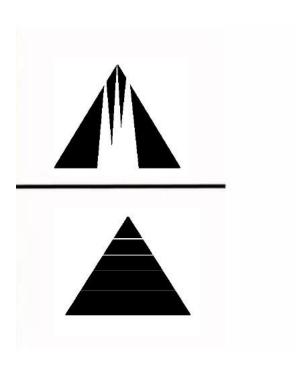
European Journal of Heart Failure (2019) doi:10.1002/ejhf.1379 **RESEARCH ARTICLE**

Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomized controlled trial

Emanuele Pivetta^{1,2*}, Alberto Goffi^{3,4,5}, Peiman Nazerian⁶, Davide Castagno⁷, Camilla Tozzetti⁸, Pietro Tizzani^{2,9}, Maria Tizzani², Giulio Porrino², Enrico Ferreri², Valeria Busso², Fulvio Morello², Cristina Paglieri², Monica Masoero¹⁰, Elisa Cassine¹¹, Federica Bovaro¹⁰, Stefano Grifoni⁶, Milena M. Maule¹, and Enrico Lupia^{2,12}, on behalf of the Study Group on Lung Ultrasound from the Molinette and Careggi Hospitals[†]

	CXR/NT Pro BNP Arm	Lung Ultrasound
Clinical Evaluation	7.2	9.46
	0.21	0.17
Integrated Evaluation	8.0	20.9
	0.17	0.07

	CXR/NT Pro BNP Arm	Lung Ultrasound
Clinical Evaluation	7.2	9.46
	0.21	0.17
Integrated Evaluation	8.0	20.9
JIP 12	0.17	0.07
	104 minuti	5 minuti


Facile. O No?

In sintesi:

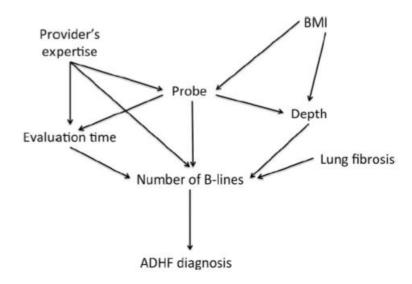
Linee Orizzontali: Buono

Linee Verticali Triangolariformi: no buono

Comuni errori nell'esecuzione dell'esame

• Original Contribution

SOURCES OF VARIABILITY IN THE DETECTION OF B-LINES, USING LUNG ULTRASOUND


Emanuele Pivetta,*,† Federico Baldassa,†,‡ Serena Masellis,†,‡ Federica Bovaro,†,§ Enrico Lupia,† and Milena M. Maule*

* Cancer Epidemiology Unit and CRPT, Department of Medical Sciences, University of Turin, Turin, Italy; †Division of Emergency Medicine, Department of Medical Sciences, University of Turin, Turin, Italy; †School of Medicine, University of Turin, Turin, Italy; and § Residency Program in Emergency Medicine, University of Turin, Turin, Italy

(Received 22 November 2017; revised 23 February 2018; in final form 27 February 2018)

METHODS

«Two operators (F.B. and E.P.) collected LUS videos for each patient, using a 4-zones-for-hemitorax scanning protocol, as suggested by the international recommendations for POC LUS (Volpicelli et al. 2012). Each patient was evaluated with a curvilinear and a phased array probe, at scanning depths of 10 and 19 cm, and a 7-s sonographic clip was recorded. After enrollment, two copies of each clip were made, which were then cut at 2 and 4 s from the beginning of the recording (which occurred randomly in the diagnostic process) to investigate the diagnostic value of various recording lengths.»

DISCUSSION

To our knowledge, this is the first study evaluating several sources of LUS variability, using both qualitative and quantitative approaches, including multilevel regression models, to assess their relative importance. We found that the operator's expertise, the type of probe and the clip duration affect the detection of B-lines in a cohort of dyspneic patients suspected of suffering from acute heart failure.

Comuni errori nell'esecuzione dell'esame

Gruppo di Ricerca
Ecografia Toracica nell'Anziano

© 2022 EDIZIONI MINERVA MEDICA Online version at http://www.minervamedica.it Minerva Anestesiologica 2022 April;88(4):308-13 DOI: 10.23736/S0375-9393.22.16195-X

EXPERTS' OPINION

Ten conditions where lung ultrasonography may fail: limits, pitfalls and lessons learned from a computer-aided algorithmic approach

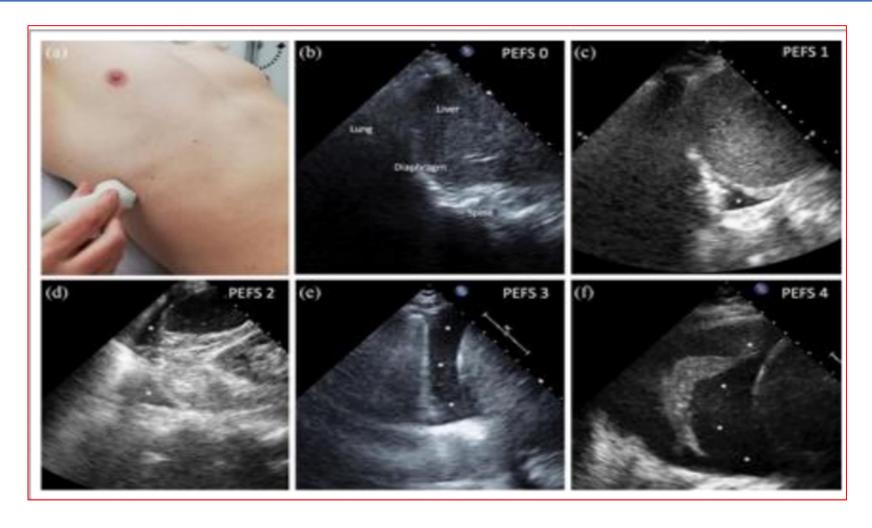
Francesco CORRADI 1,2 *, Luigi VETRUGNO 3,4, Alessandro ISIRDI 1, Elena BIGNAMI 5, Patrizia BOCCACCI 6, Francesco FORFORI 1

Table I.—Ten conditions	potentially affecting lung ultrasound reliability.	
Condition affecting LUS reliability	Cause of inaccuracy	Type of inaccuracy
Different acquisition protocols	Single frame vs. multi-frame evaluation	Over/Underestimation
Multiple scoring systems	Scores based on the number of B-lines Scores based on the assessment of the screen occupied by B-lines Scores based on the detection of coalescent B-lines	Over/Underestimation Over/Underestimation Overestimation
Inter- and intra-observer variability	Poor to moderate reproducibility	FP/FN
Ventilator settings	Mechanical ventilation with high PEEP	FN
Lung hyperinflation	Cannot be assessed and quantified	FN
Chronic pulmonary diseases	Asthma/COPD: peripheral bullae, hyperinflation, auto-PEEP	FN
Interstitial pulmonary fibrosis	Cannot differentiate increased lung water from increased tissue content in lung disorders	FP
Consolidations in deep parenchyma	Interposition of aerated parenchyma between pleural line and consolidations	FN
Chronic heart failure	Alveolar basal membrane thickening leads to reduced capillary filtration and increased lymphatic drainage causing higher threshold for the development of pulmonary edema despite elevated cardiac filling pressure	FN
Different types of pulmonary edema	Unable to differentiate the etiology	FP/FN

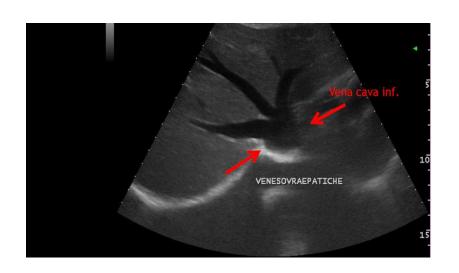
PEEP: positive end-expiratory pressure: COPD: chronic obstructive nulmonary disease: FN: false negative results: FP false positive results

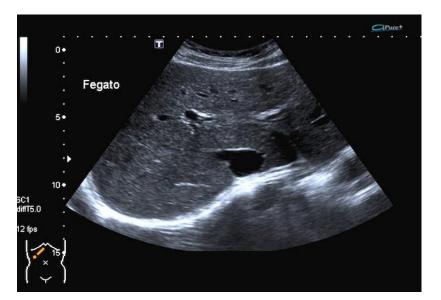
E' necessario un approccio integrato

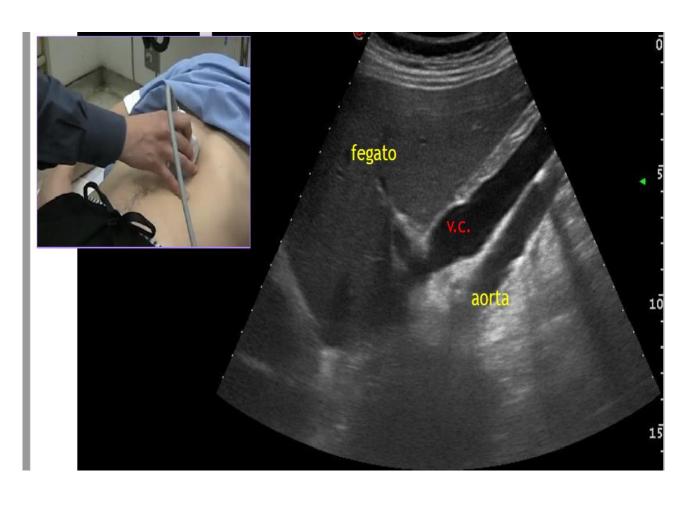
- Ecografia toracica
- Valutazione del versamento pleurico
- Valutazione vena cava
- FOCUS
- Ecografia diaframmatica


Versamento pleurico

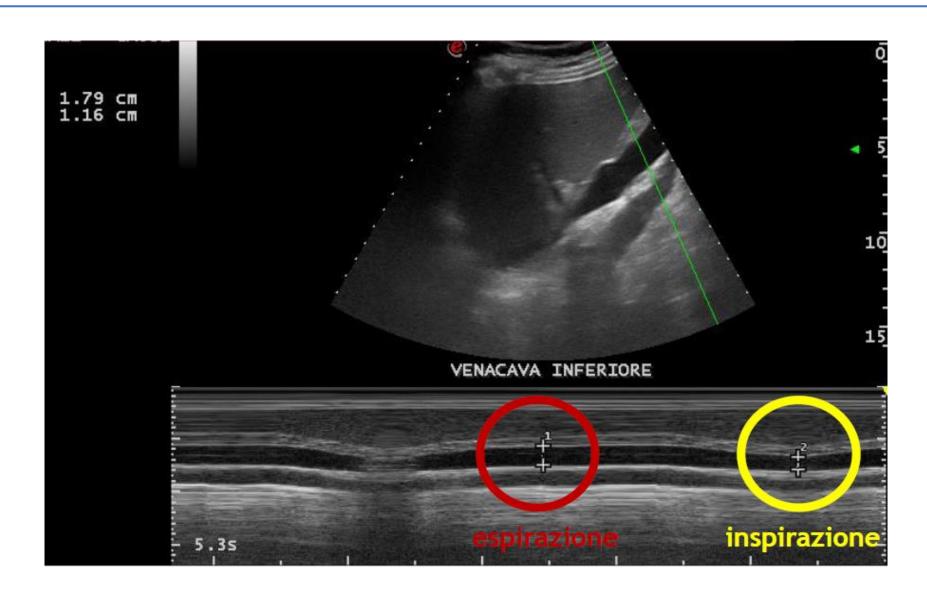
Versamento pleurico



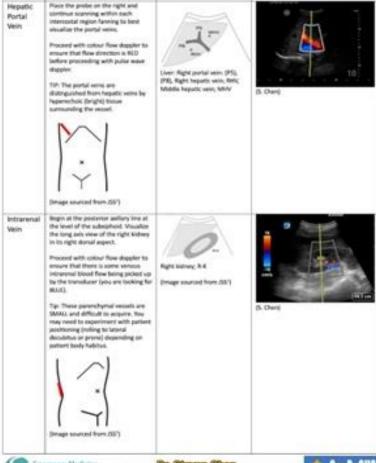



Lindner, M.; Thomas, R.; Claggett, B.; Lewis, E.F.; Groarke, J.; Merz, A.A.; Silverman, M.B.; Swamy, V.; Rivero, J.; Hohenstein, C.; et al. Quantification of Pleural Effusions on Thoracic Ultrasound in Acute Heart Failure. *Eur. Heart J. Acute Cardiovasc. Care* **2020**, *9*, 513–521.

Valutazione vena cava

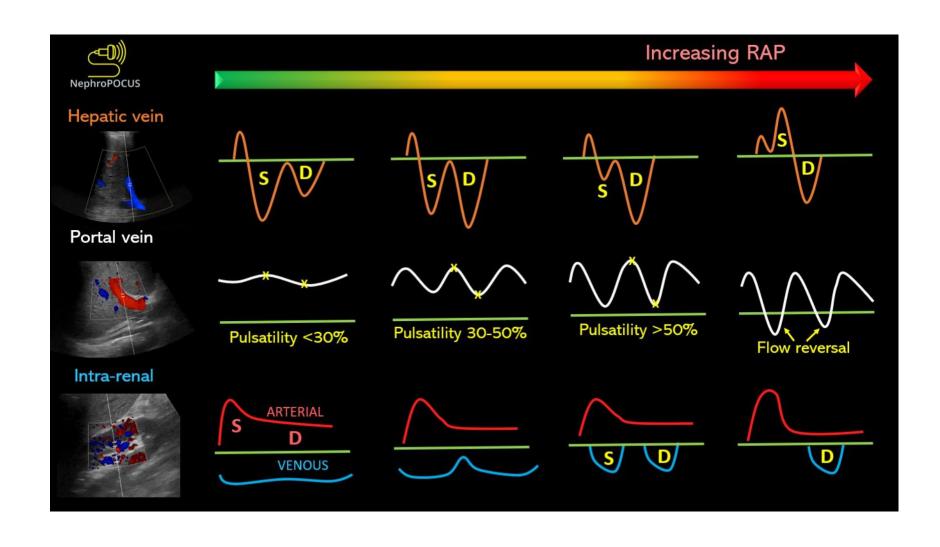


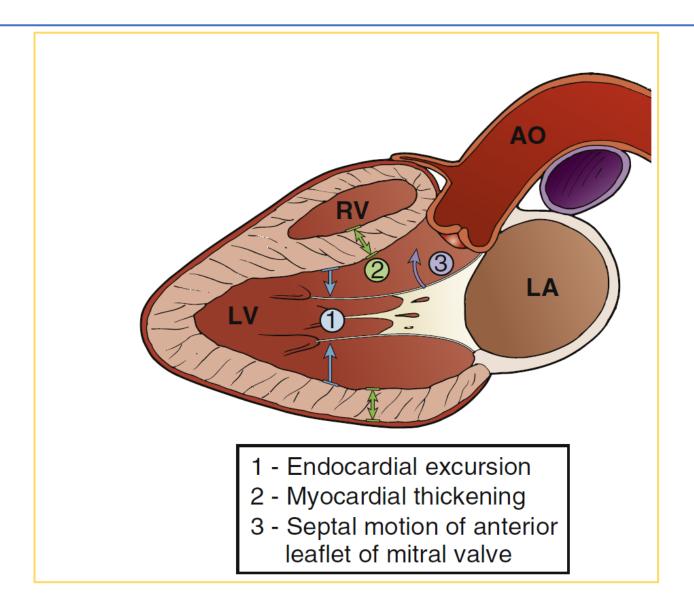
Valutazione vena cava

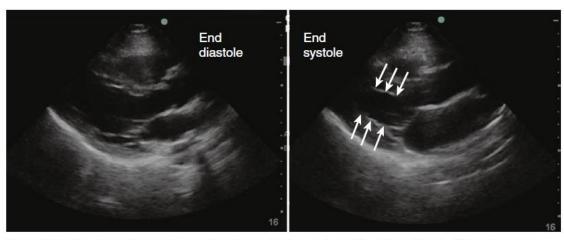

Valutazione vena cava: caso clinico

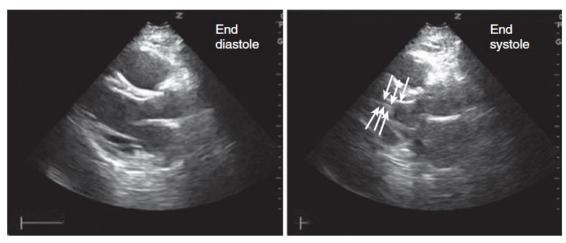
VEXUS Image Acquisition

View	Scanning Technique/Tips	Anatomic Diagram	Sample Ultrasound Image	Hepatic
NC (B- Mode)	Place the prote tengthalmally slightly to the right of the subsuphoid region. The diameter of the IVC should be necessarial approximatility 2-3 cm frame the junction of the IVC and right action. Tap Can begin initially with transverse subsighoid (Landiac) when with right actions control before retaining 50 degrees to obtain IVC.	(new Countries following), Portral with United portions, 107, Portral with United portions, 107, Political series (No. Political portions, 1 St. Stomach, 10, Neural No. (No. Neural Neural No. (No. Neural Neu	is there	Portal Vein
Hepathic Vein	Place the probe slong the right sub- costal margin and continue favering through the liver until hepotic verns visible. Any hepotic vern can be used for dissoler garing. Proceed with colour flow dispoler to ensure that flow direction in Built before proceeding with pulse wave despise. Tip: The right heputic vern may other not demonstrate dispoler flow since it can be perpendicular to prote, which will require adjustments with probe pacificating.	Liver Right portal veric (PS). Right Impair, veric, 814, Middle Reputit, earn, MRI, Infection sens case, NC (Image sourced from 2551)	S. Cherol. Notice: soleour hard liveen turned off during this screen-capture, the vivin should be BLAE (flow swing from probe).	Intraren. Vein




Protocollo VEXUS


Cenni di FOCUS



Cenni di FOCUS

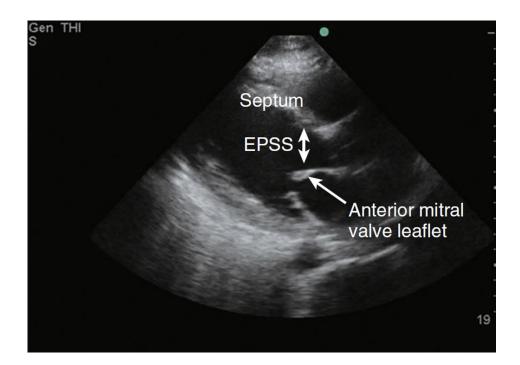
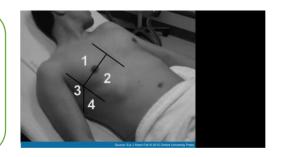
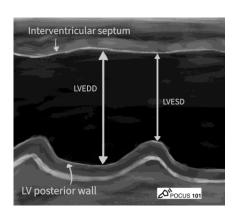


Figure 14.3 Parasternal long-axis view showing normal excursion of the left ventricular (LV) walls during systole. Endocardial resolution is excellent in this view, and thickening and excursion of LV walls can easily be appreciated.

Figure 14.4 Parasternal long-axis view showing increased myocardial thickening and endocardial excursion during systole with obliteration of the left ventricular cavity.


PAZIENTE RICOVERATO PER SCOMPENSO CARDIACO O CON COMPLICANZA DI SCOMPENSO



VALUTAZIONE CARDIO-GERIATRICA

- CONTEGGIO LINEE B LUS 8 QUADRANTI
 - VALUTAZIONE VENA CAVA
 - FOCUS con EF
- VALUTAZIONE x EVTL ECOCARDIOGRAMMA DEDICATO IN AMBULATORIO

TIMING PRIMA VISITA AMBULATORIALE

FA TACHIFREQUENTE

CFS 7-8 + BNP个

CFS 4-6 + ↑ BNP

CFS 4-6 + ↓ BNP

CFS 2-3 + ↑ BNP

CFS 2-3 + \downarrow BNP

CFS 7-8 + \downarrow BNP

7 DAYS

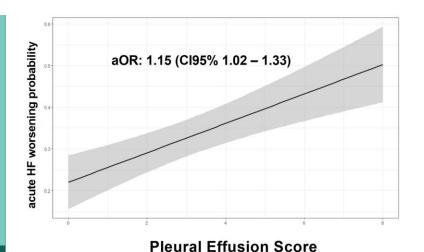
10-14 DAYS

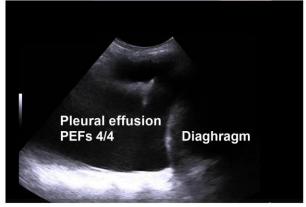
10-14 DAYS

> 21 DAYS

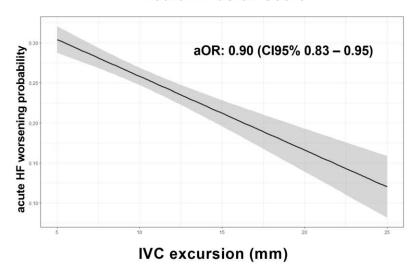
TELEVISITA

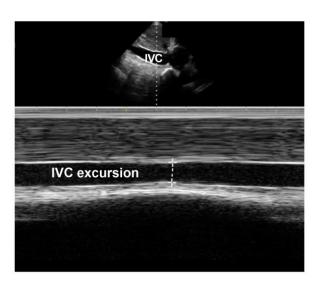
E durante l'ospedalizzazione?

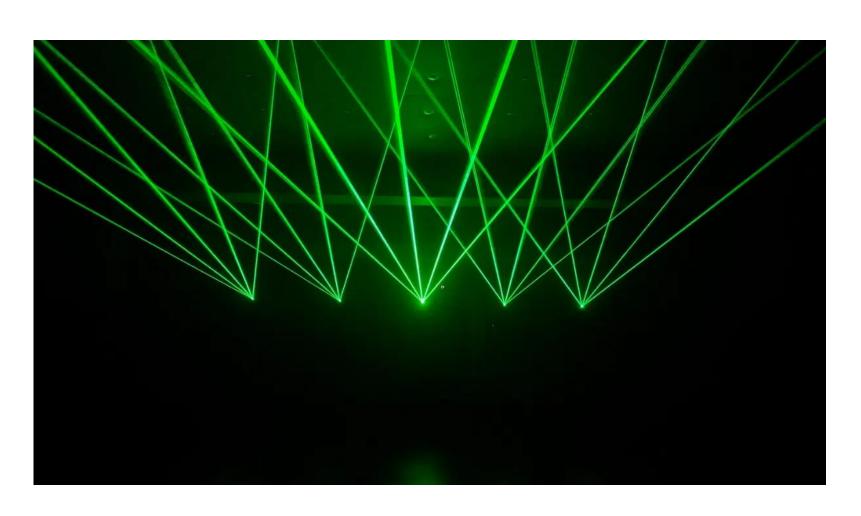



an Open Access Journal by MDPI

Predicting In-Hospital Acute Heart Failure Worsening in the Oldest Old: Insights from Point-of-Care Ultrasound


Tessa Mazzarone; Virginia Morelli; Andrea Giusti; Maria Giovanna Bianco; Lorenzo Maccioni; Cristina Cargiolli; Daniela Guarino; Agostino Virdis; Chukwuma Okoye


J. Clin. Med. 2023, Volume 12, Issue 23, 7423



By multivariable logistic analysis, total Pleural Effusion Score (PEFs) [aO.R.: 1.15 (CI95% 1.02–1.33), p = 0.043] and IVC collapsibility [aO.R.: 0.90 (CI95% 0.83–0.95), p = 0.039] emerged as independent predictors of acute HF worsening after extensive adjustment for potential confounders. In conclusion, POCUS holds promise for enhancing risk assessment, tailoring diuretic treatment, and optimizing discharge timing for older patients with ADHF.

B-lines in disco

G.B. Paziente anziano, 88 aa

Ex muratore. Vive con la moglie. Necessita di parziale aiuto nelle BADL (4/6), IADL (2/8). Anamnesi Patologica remota

Ipertensione arteriosa. Ipoacusia bilaterale, ipertrofia prostatica benigna, pregressa tromboflebite, iniziale declino cognitivo, scompenso cardiaco a FE preservata, obesità.

In data 8 Febbraio 2020 accesso in PS per persistenza di stato confusionale associato a febbricola non responsiva a terapia empirica con Ceftriaxone e trattamento psicoattivo.

In PS eseguiva: esami ematochimici (da segnalare Leucociti 11310, 82,4%, Hb 10 g/dl. PCT 1,25, PCR 6,8), BNP 230.

EGA all'ingresso (aa): pH 7,41 pO $_2$ 88 mmHg pCO $_2$ 30 mmHg SO $_2$ 97% HCO $^{3-}$ 25,5 mMol/L BE 10 mMol/L lattato 2,2 mMol/L.

Prima dell'invio in reparto per persistenza di stato confusionale, somministrato aloperidolo 1f + talofen 1 fl + midazolam ½ fl.

Anamnesi farmacologica:

Avodart 0,5 mg, Barnidipina/HCT, Ranitidina 300, Rocefin 2g (da 5 giorni), Simvastatina

G.B. Paziente anziano, 88 aa

All' arrivo in reparto il paziente viene trovato agitato, marcatamente dispnoico. SpO2 70% in aa.

Al torace rumore respiratorio ridotto con rumori discontinui tipo rantoli a medie bolle a partenza dai campi medi. Respiro addominale, addome trattabile non dolente né dolorabile peristalsi valida. Non edemi declivi

Valutazione integrata nel paziente scompensato

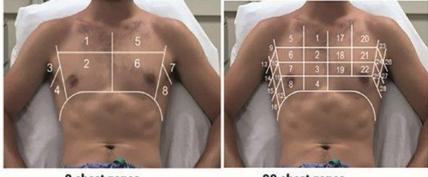
ESC HEART FAILURE ESC Heart Failure (2020) ORIGINAL RESEARCH ARTICLE

Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.12842

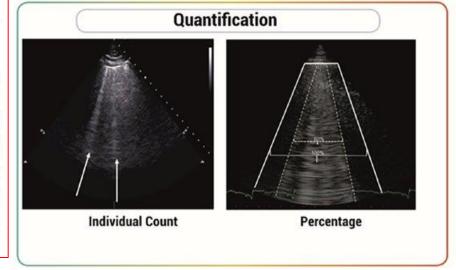
Prevalence and prognostic impact of subclinical pulmonary congestion at discharge in patients with acute heart failure

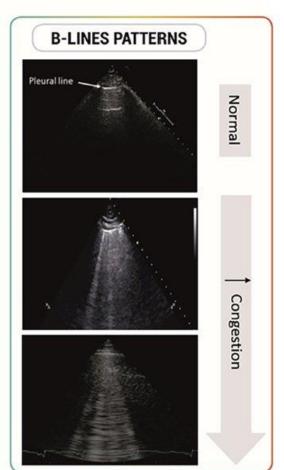
Mercedes Rivas-Lasarte¹ (ii), Alba Maestro¹ (iii), Juan Fernández-Martínez¹, Laura López-López¹, Eduard Solé-González² (iii), Miquel Vives-Borrás¹, Santiago Montero³ (iii), Nuria Mesado¹, Maria J. Pirla¹, Sonia Mirabet¹, Paula Fluvià⁴, Vicens Brossa¹, Alessandro Sionis¹ (iii), Eulàlia Roig¹, Juan Cinca¹ (iii) and Jesús Álvarez-García^{1*} (iii)

¹Cordiology Department, Hospital de la Santa Creu i Sant Pau, Ilb-SantPau, CIBERCV, Universitat Autónoma de Barcelona, Barcelona, Spain; ²Cardiology Department, Hospital del Mar, Barcelona, Spain; ²Cardiology Department, Hospital del Mar, Barcelona, Spain; ²Cardiology Department, Hospital Detor Josea Trueta German. Spain; ²Cardiology Department, Hospital Detor Josea Trueta German. Spain; ³Cardiology Department, Hospital German. Spain;


Abstract

Aims Residual pulmonary congestion at hospital discharge can worsen the outcomes in patients with heart failure (HF) and can be detected by lung ultrasound (LUS). The aim of this study was to analyse the prevalence of subclinical pulmonary congestion at discharge and its impact on prognosis in patients admitted for acute HF.

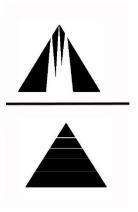

Methods and results This is a post-hoc analysis of the LUS-HF trial. LUS was performed by the investigators in eight chest zones with a pocket device. Physical exam was subsequently performed by the treating physicians. Primary outcome was a combined endpoint of rehospitalization, unexpected visit for HF worsening or death at 6- month follow-up. Subclinical pulmonary congestion at discharge was defined as the presence of ≥5 B-lines in LUS in absence of rales in the auscultation employing the area under the ROC curve. At discharge, 100 patients (81%) did not show clinical signs of pulmonary congestion. Of these, 41 had ≥5 B-lines. Independent factors related with the presence of subclinical pulmonary congestion were anaemia, higher New York Heart Association (NYHA) class, and N terminal pro brain natriuretic peptide (NT-proBNP). After adjusting by propensity score analysis including age, renal insufficiency, atrial fibrillation, NYHA class, NT-proBNP levels, clinical congestion, and the trial intervention, the presence of subclinical pulmonary congestion at discharge was a risk factor for the occurrence of the primary outcome (hazard ratio 2.63; 95% confidence interval: 1.08-6.41; P = 0.033).


Conclusions Up to 40% of patients considered 'dry' according to pulmonary auscultation presents subclinical congestion at hospital discharge that can be detected by LUS and implies a worse prognosis at 6- month follow-up. Comorbidities, high values of natriuretic peptides, and higher NYHA class are the factors related with its presence.

LUNG ULTRASOUND



Posizione R2 Posizione L2


Proiezione longitudinale vena cava inferiore

Posizione PLAPS dx (e sx)

Conclusioni

- Le Linee B sono il segno cardine, ma non l'unico di interstiziopatia polmonare
- Rimangono comunque un Segno ASPECIFICO riconducibile a diverse condizioni cliniche
- Tuttavia vi sono alterazioni tipiche a seconda del tipo di interstiziopatia che possono aiutare nella diagnosi differenziale
- La corretta definizione della interstiziopatia congestizia da HF necessita una valutazione clinica ma anche ultrasonografica integrata
- Lo studio delle linee B può avere un significato clinico in termini di follow-up

