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Methods for identifying patients at high risk for osteopo-
rotic fractures, including dual-energy X-ray absorptiometry 
(DXA)1,2 and risk predictors like the Fracture Risk Assessment 
Tool (FRAX)3–6, are underutilized. We assessed the feasibility 
of automatic, opportunistic fracture risk evaluation based on 
routine abdomen or chest computed tomography (CT) scans. 
A CT-based predictor was created using three automatically 
generated bone imaging biomarkers (vertebral compression 
fractures (VCFs), simulated DXA T-scores and lumbar tra-
becular density) and CT metadata of age and sex. A cohort of 
48,227 individuals (51.8% women) aged 50–90 with avail-
able CTs before 2012 (index date) were assessed for 5-year 
fracture risk using FRAX with no bone mineral density (BMD) 
input (FRAXnb) and the CT-based predictor. Predictions were 
compared to outcomes of major osteoporotic fractures and 
hip fractures during 2012–2017 (follow-up period). Compared 
with FRAXnb, the major osteoporotic fracture CT-based pre-
dictor presented better receiver operating characteristic area 
under curve (AUC), sensitivity and positive predictive value 
(PPV) (+1.9%, +2.4% and +0.7%, respectively). The AUC, 
sensitivity and PPV measures of the hip fracture CT-based 
predictor were noninferior to FRAXnb at a noninferiority mar-
gin of 1%. When FRAXnb inputs are not available, the initial 
evaluation of fracture risk can be done completely automati-
cally based on a single abdomen or chest CT, which is often 
available for screening candidates7,8.

Osteoporotic fractures are a major public health concern. Over 
20% of patients will not survive the year following a hip frac-
ture9 and an additional 20–60% will suffer residual morbidity10. 
Prophylactic interventions have been shown to decrease osteopo-
rotic fracture risk3,11,12, yet osteoporosis screening remains markedly 
underutilized. In the USA, fewer than 23% of people undergo BMD 
evaluation by DXA1,2 as recommended13. Similarly, low utilization 
rates have been observed for FRAX3–6 despite recommendations in 
international guidelines13,14.

It has been suggested that this underutilization is due to lack of 
physician time and awareness15–17. FRAX could be automatically 
calculated when digital data are available for demographics, body 
measurements, diagnostic history, medication use, family medical 
history and life habits (smoking and alcohol use)3. However, most 
health-care providers do not have comprehensive data readily avail-
able due to the fragmented nature of medical data and high insurer 
turnover18–20.

Unlike the underutilization of DXA and FRAX, CT scans are rel-
atively ubiquitous7,8. CT-based metrics, such as vertebral trabecular 
attenuation, correlate strongly with DXA results21,22. Low vertebral 

trabecular attenuation and VCFs on CT scans have also been hailed 
as indicators of osteoporosis and subsequent major osteoporotic 
fractures23–26.

An automated process for evaluating fracture risk based on exist-
ing or newly acquired CT scans can help in fracture risk evaluation 
among individuals that undergo such CT scans and opens possi-
bilities for earlier interventions. The objective of this study was to 
evaluate the feasibility of creating such a CT-based fracture risk pre-
dictor and compare its performance to FRAXnb. In addition, we 
evaluated the performance of a FRAXnb-CT predictor that is based 
on inputs from both predictors.

As of 1 July 2012 (index date), there were 1,112,199 members 
aged 50–90 years in Clalit Health Services, a large integrated payer/
provider health-care organization in Israel (see the population flow-
chart in Fig. 1). Of these, 30,194 (2.7%) were excluded due to lack 
of continuous membership. Of the remaining members, 56,197 
(5.2%) had available abdomen or chest CT scans before the index 
date. A group of 670 (1.2%) patients were excluded because their 
CT was used in the bone imaging biomarker development training 
set; another 7,300 (13.1%) were excluded due to either the VCF or 
the simulated DXA T-score algorithms failing to produce a bone 
imaging biomarker in their available CT scans (lumbar trabecular 
density was deemed nonmandatory and allowed to be missing).

The success rates of the automatic algorithms in evaluating the 
existence of VCFs, producing the simulated DXA T-score and mea-
suring the minimal L1-4 trabecular density were 96.5%, 84.3% and 
62.3%, respectively. The overall success rate of producing the two 
mandatory bone imaging biomarkers (VCF and simulated DXA 
T-score) for a single CT was 83.6%.

The final population comprised 48,227 individuals, of whom 
5,106 (10.6%) experienced a major osteoporotic fracture (hip, verte-
bral, proximal humerus or distal radius fractures) and 1,901 (3.9%) 
experienced a hip fracture before 31 June 2017, the end of the fol-
low-up (Table 1). A total of 15.6% of the cohort had a VCF and 
17.0% had a simulated T-score in the range of osteoporosis accord-
ing to the algorithms. The characteristics of the CT scans of the 
study population that were evaluated for bone imaging biomarkers 
are detailed in Supplementary Table 1.

Table 2 presents the discriminatory performance of the FRAXnb, 
CT-based and FRAXnb-CT prediction tools for both major osteo-
porotic fracture and hip fracture outcomes. Table 3 presents the 
discriminatory performance of the CT-based and FRAXnb-CT 
prediction tools compared to the FRAXnb tool. (The coefficients 
of the CT-based tool are detailed in Supplementary Table 2.) Figure 
2 presents the receiver operating characteristic curves of the three 
tools for the study population.
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The AUC values for major osteoporotic fractures were 69.1% 
for FRAXnb, 70.9% for the CT-based tool and 72.3% for the 
FRAXnb-CT tool (Table 2). Both CT and FRAXnb-CT tools had a 
significantly better AUC compared to FRAXnb (+1.9% and +3.2%, 
respectively (Table 3)). Both tools also had improved sensitivity and 
PPV. A sensitivity analysis of the ability of the major osteoporotic 
fracture predictors to separately predict each of the four fractures 
that compose this outcome (Supplementary Table 3a,b) revealed 
that the superiority of the CT-based tool compared to the FRAXnb 
tool resulted from being better able to predict vertebral and proxi-
mal humerus fractures and its noninferior ability to predict hip 
and distal radius fractures. The superiority of the FRAXnb-CT tool 
compared to the FRAXnb tool resulted from a better ability to pre-
dict all fractures.

The AUC values for hip fracture prediction were 75.1% 
for FRAXnb, 76.0% for the CT-based tool and 77.2% for the 
FRAXnb-CT tool (Table 2). The AUC of the CT-based tool was 
noninferior to FRAXnb at a noninferiority margin of 1% and  
the AUC of the FRAXnb-CT tool was significantly better than 
FRAXnb (+2.1%) (Table 3). Sensitivity and PPV showed the same 
pattern of noninferiority when comparing the CT-based tool to the 
FRAXnb tool and superiority when comparing the FRAXnb-CT 
tool to the FRAXnb tool (Table 3).

The calibration performance of the three tools is presented 
in Fig. 3 (calibration plots) and Supplementary Table 4 (com-
parison between observed rates and average predicted risks). 
FRAXnb tended to underestimate risk, while the CT-based and 
FRAXnb-CT prediction tools presented better calibration. The 
FRAXnb-CT tool, which presented the least significant Hosmer–
Lemeshow value, was used to translate the National Osteoporosis 

Foundation guideline13 cutoffs into the proportion of the popula-
tion at high risk.

Compared to the baseline population of 1,025,808 members 
without available CT scans (Supplementary Table 5), the study 
population had relatively older ages, greater proportion of men 
and higher rates of previous major osteoporotic fracture, second-
ary osteoporosis and glucocorticoids use. Supplementary Table 6 
presents the FRAXnb discriminatory performance on this baseline 
population with AUCs of 71.2% and 81.1% for major osteoporotic 
fractures and hip fractures, respectively. A more contemporary 
population who underwent abdomen or chest CT scans constitutes 
26.5% of 50–90-year-olds as of July 2017 and has comparable char-
acteristics (Supplementary Table 7) to the study population, which 
constituted 5.2% of the 2012 population.

This study demonstrated that at least 83.6% of those aged 50–90 
years who underwent routine chest or abdomen CT scans for any 
clinical indication could have an initial osteoporotic fracture risk 
evaluation performed completely automatically and solely based on 
the data of a single CT. We demonstrated that a CT-based risk strati-
fication tool using three bone imaging biomarkers had comparable 
discriminatory performance to FRAXnb both for major osteopo-
rotic fractures (statistical superiority) and hip fractures (statistical 
noninferiority).

We further showed that if the inputs of FRAXnb are available, the 
addition of the CT bone imaging biomarkers can produce statisti-
cally better discrimination for both outcomes. However, the clinical 
implications of this improvement are more pronounced for major 
osteoporotic fractures (+3.3% sensitivity, +0.9% PPV), and less so 
for hip fractures (+1.5% sensitivity, +0.1% PPV). The FRAXnb tool, 
which was less calibrated than the CT-based and FRAXnb-CT tools, 
could be recalibrated27, but that would not change the demonstrated 
relative discriminatory performance.

This study used FRAXnb, the FRAX module without BMD 
input, for two reasons. The first was that due to DXA underutiliza-
tion2,14, mandating an existing DXA result would have resulted in a 
very small cohort. The second and more fundamental reason is that 
the intended use of this CT predictor is before a patient is assessed 
by DXA. Some guidelines recommend FRAXnb as a first step of 
risk stratification into low (reassurance), medium (further evalua-
tion by DXA and then FRAX with BMD) and high-risk categories 
(treatment)17. However, most screening candidates are not evalu-
ated for this first risk stratification, which is where the CT predic-
tor could be potentially used. In countries that adhere to guidelines 
recommending DXA for all screening candidates (women aged  
65 and older and men aged 70 and older)13, the CT predictor could 
be used to identify high-risk individuals that should be pursued 
more proactively to make sure they undergo DXA. Thus, it should 
be emphasized that the CT-based predictor is not meant to replace 
the FRAX module with BMD, which is meant for a later phase in the 
risk evaluation process.

The discriminatory performance of FRAXnb in previous stud-
ies28–30 was comparable to our baseline population and higher than 
that of the study population. These observations indicate that the 
lower performance can probably be attributed to selection bias in 
the more homogeneous study population30, specifically one where 
all individuals underwent CT imaging. However, since CT-based 
fracture risk evaluation is only intended to be used on individuals 
undergoing CT scans, the difference between this population and 
the baseline population does not affect the external validity of the 
presented results.

Opportunistic screening for fracture risk markers using CT 
scans has been explored and conceptually validated. Several stud-
ies focused on simulating DXA T-scores from CT scans, but most 
of them compared the CT-derived metrics to DXA results and not 
actual fracture outcomes22,25,31,32. Some studies demonstrated an 
automated generation of CT-derived metrics and advanced the goal 

Clalit Health Services members
aged 50–90 years as of the index

date (1 July 2012)
1,112,199

Continuous members in the
exposure and follow-up periods

1,082,005 (98.2%)

Members with available abdomen/
chest CT before the index date

56,197 (5.2%)

Noncontinuous members for 2 years
before the index date

9,974 (0.9%)

Baseline population:

Members without available abdomen/
chest CT before the index date 

1,025,808 (94.8%)

Excluded

Continuous members during the
exposure period

1,102,225 (99.1%) Noncontinuous members during the
follow-up period
20,220 (1.8%)

Used for training set of CT bone 
markers 670 (1.2%)

Members with available abdomen/
chest CT before the index date,
whose data were not used for

bone imaging biomarker training
55,527 (98.8%)

Simulated DXA T-score or 
compression fracture algorithm run 

failed 7,300 (13.1%)

Study population:

Members with available abdomen/
chest CT before the index date, 
with successful running of the 
simulated DXA T-score and 

compression fracture algorithm
48,227 (86.9%)

Fig. 1 | Flowchart of the study population, including all inclusion and 
exclusion criteria.
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Table 1 | characteristics of study population by FRAXnb input variables and ct-based bone imaging biomarkers

input variablea Mean 
(s.d.)

n (%) Major 
osteoporotic 
fracture outcome 
rate, n (%)b

Hip fracture 
rate, n (%)b

Vertebral 
fracture rate,  
n (%)b

Proximal 
humerus 
fracture rate,  
n (%)b

Distal radius 
fracture rate,  
n (%)b

Overallc 48,227 (100) 5,106 (10.6) 1,901 (3.9) 1,693 (3.5) 1,035 (2.1) 1,171 (2.4)

FRAXnb input variables

Age group (years) 69.0 (9.9)

 50–59 9,937 (20.6) 551 (5.5) 95 (1.0) 187 (1.9) 124 (1.2) 186 (1.9)

 60–69 15,618 (32.4) 1,209 (7.7) 311 (2.0) 390 (2.5) 284 (1.8) 343 (2.2)

 70–79 13,947 (28.9) 1,791 (12.8) 662 (4.7) 642 (4.6) 384 (2.8) 386 (2.8)

 80–89 8,725 (18.1) 1,555 (17.8) 833 (9.5) 474 (5.4) 243 (2.8) 256 (2.9)

Sex

 Women 25,000 (51.8) 3,462 (13.8) 1,196 (4.8) 1,117 (4.5) 775 (3.1) 907 (3.6)

 Men 23,227 (48.2) 1,644 (7.1) 705 (3.0) 576 (2.5) 260 (1.1) 264 (1.1)

Body mass index

 Obese 14,559 (30.2) 1,482 (10.2) 440 (3.0) 500 (3.4) 381 (2.6) 351 (2.4)

 Overweight 18,854 (39.1) 1,884 (10.0) 665 (3.5) 630 (3.3) 391 (2.1) 455 (2.4)

 Normal 13,763 (28.5) 1,601 (11.6) 721 (5.2) 526 (3.8) 248 (1.8) 343 (2.5)

 Underweight 721 (1.5) 109 (15.1) 62 (8.6) 32 (4.4) 10 (1.4) 14 (1.9)

 Missing 330 (0.7) 30 (9.1) 13 (3.9) 5 (1.5) 5 (1.5) 8 (2.4)

Smoking

 Nonsmoker 29,232 (60.6) 3,369 (11.5) 1,229 (4.2) 1,099 (3.8) 695 (2.4) 815 (2.8)

 Former smoker 11,173 (23.2) 1,030 (9.2) 390 (3.5) 363 (3.2) 215 (1.9) 202 (1.8)

 Current smoker 7,458 (15.5) 661 (8.9) 258 (3.5) 218 (2.9) 116 (1.6) 144 (1.9)

 Missing 364 (0.8) 46 (12.6) 24 (6.6) 13 (3.6) 9 (2.5) 10 (2.7)

Alcoholism

 No 47,396 (98.3) 5,010 (10.6) 1,858 (3.9) 1,664 (3.5) 1,017 (2.1) 1,148 (2.4)

 yes 831 (1.7) 96 (11.6) 43 (5.2) 29 (3.5) 18 (2.2) 23 (2.8)

Parental hip fracture

 No 47,342 (98.2) 5,046 (10.7) 1,890 (4.0) 1,671 (3.5) 1,025 (2.2) 1,150 (2.4)

 yes 885 (1.8) 60 (6.8) 11 (1.2) 22 (2.5) 10 (1.1) 21 (2.4)

Major osteoporotic fracture

 No 43,183 (89.5) 3,473 (8.0) 1,227 (2.8) 1,057 (2.4) 725 (1.7) 852 (2.0)

 yes 5,044 (10.5) 1,633 (32.4) 674 (13.4) 636 (12.6) 310 (6.1) 319 (6.3)

Secondary osteoporosisd

 No 42,031 (87.2) 4,298 (10.2) 1,608 (3.8) 1,421 (3.4) 849 (2.0) 983 (2.3)

 yes 6,196 (12.8) 808 (13.0) 293 (4.7) 272 (4.4) 186 (3.0) 188 (3.0)

Rheumatoid arthritis

 No 46,313 (96.0) 4,782 (10.3) 1,779 (3.8) 1,563 (3.4) 967 (2.1) 1,110 (2.4)

 yes 1,914 (4.0) 324 (16.9) 122 (6.4) 130 (6.8) 68 (3.6) 61 (3.2)

Glucocorticoids

 No 42,865 (88.9) 4,351 (10.2) 1,645 (3.8) 1,364 (3.2) 879 (2.1) 1,040 (2.4)

 yes 5,362 (11.1) 755 (14.1) 256 (4.8) 329 (6.1) 156 (2.9) 131 (2.4)

Algorithmically derived, ct-based bone imaging biomarkers

Simulated T-score

 Normal (T-score ≥ 1.5) 27,262 (56.5) 1,831 (6.7) 618 (2.3) 575 (2.1) 385 (1.4) 442 (1.6)

 Osteopenia 
(−2.5 < T-score ≤ −1.5)

12,769 (26.5) 1,649 (12.9) 625 (4.9) 536 (4.2) 331 (2.6) 388 (3.0)

 Osteoporosis 
(T-score ≤ −2.5)

8,196 (17.0) 1,626 (19.8) 658 (8.0) 582 (7.1) 319 (3.9) 341 (4.2)

Continued
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of broader population-level opportunistic screening25,33,34. While 
most studies focused on a single CT-derived feature that correlates 
to fracture risk, some focused on several features23,26,35,36, includ-
ing measures of bone biomechanical strength36. Only a minority of 
these studies used information regarding fracture outcomes to cor-
relate to the CT-derived metrics23,36, but they used case-control (204 
cases, 204 controls)23 and case-cohort (1,959 cases, 1,979 controls)36 
designs that do not preserve the true fracture incidence rate during 
a specified follow-up period.

The present work is aligned conceptually with these prior stud-
ies while utilizing a substantially larger dataset in a retrospective 
cohort design that allows for the creation of an actual fracture risk 
predictor. In addition, our predictor was created using multiple 

CT-derived metrics, all produced in a completely automatic man-
ner. To the best of our knowledge, this is the only study of these 
characteristics, and the only study to compare CT-based predicted 
performance to a fracture predictor with accepted clinical utility. 
Further strengths of this study include the fact that the CT-based 
prediction tool is not a so-called black box. Rather, it used bone 
imaging biomarkers that can be interpreted and trusted by phy-
sicians and reproduced by radiologists. The ability to use both 
chest and abdomen CT scans was another strength because it sub-
stantially increased the scope of screening without compromising  
the accuracy of the prediction. Most VCFs occur in the  
thoracic spine and thoracolumbar junction, which are present on 
both scans.
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Fig. 2 | Receiver operating characteristic curves for the major osteoporotic fracture and hip fracture outcomes. The plot was created using the first 
imputed test set, which consisted of n = 24,113 individuals. The curve presents the true positive (sensitivity) and false positive rates (1 − specificity) for the 
different cutoffs. The circles represent the combination of true and false positive rates that corresponds to the cutoff recommended for intervention by the 
guidelines. The dotted lines represent the 95% CIs calculated using 500 bootstraps on the first imputed test set.

input variablea Mean 
(s.d.)

n (%) Major 
osteoporotic 
fracture outcome 
rate, n (%)b

Hip fracture 
rate, n (%)b

Vertebral 
fracture rate,  
n (%)b

Proximal 
humerus 
fracture rate,  
n (%)b

Distal radius 
fracture rate,  
n (%)b

VCF

 No 40,706 (84.4) 3,624 (8.9) 1,320 (3.2) 1,015 (2.5) 783 (1.9) 935 (2.3)

 yes 7,521 (15.6) 1,482 (19.7) 581 (7.7) 678 (9.0) 252 (3.4) 236 (3.1)

Minimal L1-4 trabecular densitye

 76th–100th percentile 
(137.7–536.9 HU)

8,335 (17.3) 375 (4.5) 94 (1.1) 105 (1.3) 95 (1.1) 103 (1.2)

 51st–75th percentile (108.1–
137.7 HU)

8,340 (17.3) 616 (7.4) 189 (2.3) 171 (2.1) 155 (1.9) 176 (2.1)

 26th–50th percentile 
(80.5–108.1 HU)

8,340 (17.3) 942 (11.3) 338 (4.1) 312 (3.7) 186 (2.2) 232 (2.8)

 0–25th percentile (0.1–
80.5 HU)

8,340 (17.3) 1,639 (19.7) 707 (8.5) 596 (7.1) 305 (3.7) 330 (4.0)

 Missing 14,872 (30.8) 1,534 (10.3) 573 (3.9) 509 (3.4) 294 (2.0) 330 (2.2)
aValues within each input variable were sorted by the anticipated fracture rate, that is, the value of the variable with the lowest anticipated risk appears first. bFracture rate during the follow-up period within 
the population of each subgroup. cThat is, the entire study population (training + test datasets). dDefined by any of the following: type 1 diabetes; osteogenesis imperfecta; hyperthyroidism; hypogonadism; 
premature menopause; malabsorption; and chronic liver disease. eThe 76th–100th, 51st–75th, 26th–50th and 0–25th percentiles translate to the 16–20, 11–15, 6–10 and 1–5 categories in the categorical 
variable, respectively. HU, Hounsfield unit.

Table 1 | characteristics of study population by FRAXnb input variables and ct-based bone imaging biomarkers (continued)
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This study has several limitations. First, compared to the rela-
tively high estimated proportion of 50–90-year-olds who under-
went chest or abdomen CT scans, only 5.2% of the potential study  

population had a relevant CT scan available. This discrepancy was 
due to the relatively small number of Clalit Health Services CT scan-
ners connected to a central picture archiving and communication 
system (PACS) before the index date. Nevertheless, the final study 
population is the largest that has been studied to date to predict frac-
ture risk based on CT scans and was large enough to provide statisti-
cal significance. Furthermore, the similarity of the study population 
to the broader population of screening candidates as of 2017 (26.5%) 
further supports the external validity of the presented results to the 
screening candidates’ population. Another potential limitation was 
that the CT-based prediction tool could only be used on 83.6% of the 
CT scans that potentially included the relevant vertebrae (reflecting 
the rate of CT scans for which both VCF and simulated T-score algo-
rithms ran successfully). The actual rate of individuals who could be 
evaluated for fracture risk was 86.9%, since some underwent more 
than one CT. This rate will potentially increase as more CT scans 
become available in a central PACS system37,38.

Although potentially preventable, osteoporotic fractures are 
still a major cause of morbidity, mortality and health-care expen-
diture39,40. When data for automatic calculation of FRAXnb are not 
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Fig. 3 | calibration plots for the major osteoporotic fracture and hip fracture outcomes. The plots were created using the first imputed test dataset, 
which consisted of n = 24,113 individuals. Each point represents a decile of predicted risk and the corresponding observed average risk, with the points 
situated close to the diagonal representing good calibration. The error bars of the observed risk for each decile of the predicted risk represent the 95% CIs 
calculated using 500 bootstraps on the first imputed test dataset.

Table 3 | comparative discriminatory performance (%) of the 
ct-based and FRAXnb-ct prediction tools to the FRAXnb 
prediction tool

ct-based compared to 
FRAXnb

FRAXnb-ct compared 
to FRAXnb

Major osteoporotic fracture outcome

 AUC (95% CI) +1.9 (1.0–2.7) +3.2 (2.6–3.8)

 Sensitivity (95% CI) +2.4 (0.6–4.1) +3.3 (1.8–4.7)

 PPV (95% CI) +0.7 (0.2–1.1) +0.9 (0.5–1.3)

Hip fracture outcome

 AUC (95% CI) +0.9 (−0.1 to 1.9) +2.1 (1.5–2.7)

 Sensitivity (95% CI) +1.5 (−0.1 to 3.2) +1.5 (0.2–2.8)

 PPV (95% CI) +0.1 (0.0–0.2) +0.1 (0.0–0.2)

Analysis is based on the test dataset, which consisted of n = 24,113 individuals. The CIs were 
calculated using bootstraps as detailed in the Methods.

Table 2 | Discriminatory performance (%) of the FRAXnb, ct-
based and FRAXnb-ct prediction tools

Discriminatory 
measuresa

FRAXnb 
prediction tool

ct-based 
prediction tool

FRAXnb-ct 
prediction tool

Major osteoporotic fracture outcome

 AUC (95% CI) 69.1  
(68.0–70.2)

70.9  
(69.9–72.0)

72.3  
(71.3–73.3)

 Absolute risk 
cutoff

4.9 10.3 10.0

 Sensitivity  
(95% CI)b

64.1  
(62.4–65.9)

66.5  
(64.7–68.2)

67.4  
(65.7–69.1)

 Specificity  
(95% CI)b

64.4  
(64.2–64.7)

64.7  
(64.5–64.9)

64.8  
(64.6–65.1)

 PPV (95% CI)b 17.7 (17.0–18.5) 18.4 (17.6–19.2) 18.6 (17.8–19.5)

 NPV (95% CI)b 93.7  
(93.4–94.1)

94.2  
(93.8–94.5)

94.3  
(93.9–94.7)

Hip fracture outcome

 AUC (95% CI) 75.1  
(73.6–76.6)

76.0  
(74.5–77.4)

77.2  
(75.7–78.6)

 Absolute risk 
cutoff

0.7 1.7 1.5

 Sensitivity  
(95% CI)b

91.1  
(89.3–92.9)

92.6  
(90.9–94.3)

92.6  
(90.9–94.3)

 Specificity  
(95% CI)b

36.8  
(36.7–36.9)

36.9  
(36.8–37.0)

36.9  
(36.8–37.0)

 PPV (95% CI)b 5.6 (5.2–6.0) 5.7 (5.3–6.1) 5.7 (5.3–6.1)

 NPV (95% CI)b 99.0  
(98.8–99.2)

99.2  
(99.0–99.4)

99.2  
(99.0–99.4)

Analysis is based on the test dataset, which consisted of n = 24,113 individuals. The CIs were 
calculated using the bootstraps as detailed in the Methods. aAll measures were evaluated and 
averaged across the ten imputed datasets of the test dataset. bFor a proportion at high risk, which 
was set by applying the National Osteoporosis Foundation cutoffs to the FRAXnb-CT prediction tool.
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available, a CT-based fracture risk predictor could be used as an ini-
tial screening tool that does not require physician time and aware-
ness, and utilizes CT scans already performed and paid for in terms 
of health-care expenditure, patient time and radiation exposure. 
This screening method can be used on existing and newly acquired 
abdomen or chest CT scans, which are becoming available for a sub-
stantial percentage of screening candidates, and thus increase the 
number of high-risk individuals who could be identified.
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summaries, source data, extended data, supplementary informa-
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Methods
Study design. In this retrospective cohort study, we created a CT-based prediction 
tool that calculated fracture risk scores automatically based on data taken solely 
from chest or abdomen CT scans. The tool was created by integrating three 
bone imaging biomarkers generated by deep learning algorithms and adding 
CT metadata of patient age and sex. The bone imaging biomarkers included the 
presence of VCFs, CT-derived simulated DXA T-scores and evaluated lumbar 
trabecular density. We then compared whether the performance of the CT-based 
tool was comparable to that of FRAXnb. In addition, we developed and explored 
the performance of a combined FRAXnb-CT prediction tool, which used inputs 
from the previous two tools, to explore whether the CT bone imaging biomarkers 
could further improve the performance of FRAXnb.

These three prediction tools (CT-based, FRAXnb and FRAXnb-CT) were 
compared for the two outcomes assessed by the FRAXnb tool: hip fractures and 
major osteoporotic fractures. The latter is a composite of hip, vertebral, proximal 
humerus or distal radius fractures.

The tools’ performance was evaluated by comparing the calculated fracture 
risk as of 1 July 2012 (index date) to fractures occurring until the end of June 2017 
(5-year follow-up period).

Setting. This study was performed using data from Clalit Health Services, an 
Israeli health-care organization that insures and provides primary, specialty and 
inpatient health-care services to nearly 4.5 million members, over half of the Israeli 
population. Israeli residents are eligible to choose a health fund as part of the 
country’s universal health-care coverage, but switching between funds is relatively 
uncommon (less than 2% annually), allowing for longitudinal follow-up with low 
numbers lost to follow-up41.

The study was conducted in collaboration between the Clalit Health Services 
research institute, a non-for-profit organization, and Zebra Medical Vision, a 
private sector entity. Zebra Medical Vision trained the deep learning algorithms 
to create three bone imaging biomarkers. Zebra Medical Vision were provided 
ID-encrypted CT images while remaining blinded to other clinical or outcome data 
about the study cohort, including information regarding osteoporotic fractures 
during the follow-up period. To evaluate the contribution of these markers to 
osteoporotic fracture prediction, the Clalit Health Services research institute 
crossed these markers with demographic and clinical data to create fracture 
prediction tools and compare their performance.

Study population. The study population consisted of Clalit Health Services 
members aged 50–90 years as of the index date, as in the FRAXnb derivation 
cohort3. To ensure the availability of sufficient clinical information, the study 
population had to have two years of continuous Clalit Health Services membership 
before the index date and through the follow-up period or until death. The study 
population was further required to have previously undergone an adequate 
abdomen or chest CT scan as of the index date. Each participant was only included 
once, even if multiple CT scans were available. CT scans that were included in 
the training of the bone imaging biomarkers or were technically inadequate for 
interpretation by the algorithms were excluded. Due to the retrospective nature of 
the study, all qualified members were included and no sample size calculation was 
done. The study received approval from the Institutional Review Board Committee 
of Clalit Health Services for studies of outpatients (study ID 0176-15-COM2). 
Institutional Review Board Committee approval included an exemption regarding 
obtaining written informed consent.

A comparison baseline population that comprised all study population 
candidates who had available abdomen or chest CT before the index date was 
used to describe the derivation cohort in terms of characteristics and FRAXnb 
performance. In addition, a population of Clalit Health Services members aged 
50–90 years with a history of abdomen or chest CT scans as of July 2017 was 
used to determine if the study population was representative of future screening 
candidates.

Data sources. Demographic and clinical data from Clalit Health Services 
electronic health records and CT scans from Clalit Health Service PACS were 
used for this study. The electronic health records include sociodemographic 
information, diagnoses from community and hospital settings, registries, 
laboratory results, medication use and clinical markers (for example, body mass 
index (BMI) and smoking status).

Variable definition. Definitions for the extraction of the FRAXnb input variables 
and fracture outcomes, including relevant codes and categorizations, have been 
described in detail by Dagan et al.30.

The algorithmic vertebral analysis was generated automatically by deep 
learning from abdomen and chest CT scans previously acquired for any clinical 
indication, which included at least the L1 vertebral body. The first bone imaging 
biomarker included a binary indication of VCF in any thoracolumbar vertebra 
(whichever of T3-L4 that were included in the scan)42. The second bone imaging 
biomarker was a numeric variable of a simulated DXA T-score of the visualized 
L1–L4 lumbar vertebrae43,44. The third bone imaging biomarker represented an 
evaluation of the minimal trabecular density measured in the L1–L4 vertebrae, 

which was categorized into 20 equally large bins, along with a missing category for 
CT scans where the algorithm failed to produce a result.

Multiple imputation was conducted using the functions outlined by van  
Buuren et al.45 to complete any missing documentation of BMI or smoking status 
before the index date (the only variables for which missing data could be identified). 
The imputation process was repeated ten times, creating ten full datasets.

Generation of the VCF bone imaging biomarker. To develop the VCF 
detection algorithm, Zebra Medical Vision created an initial dataset of 3,701 
CT examinations of the chest and/or abdomen of individuals over the age of 50 
years. All CT scans were reviewed by two expert radiologists, who assessed them 
for the presence of VCFs as defined by the criteria outlined by Genant et al.46. A 
third radiologist (E.E.) served to arbitrate in cases where consensus could not be 
reached. Of the 3,701 CT studies, 2,681 (72%) were negative for the presence of 
VCF and 1,020 (28%) were VCF-positive (VCF+); all VCFs were annotated. The 
presence of discogenic and end plate degenerative changes was noted in the tagging 
process, but these findings were not annotated visually. Similarly, the presence of 
traumatic or oncogenic fractures was noted and documented in the tagging process 
but not annotated for training.

This initial data curation process yielded substantial differences in the 
composition of VCF+ versus VCF-negative (VCF−) subgroups. The VCF+ CT 
subgroup consisted of 61% women with an average age of 73 years (s.d. 12.4) 
and 39% men with an average age of 66.8 years (s.d. 16.8). The VCF− subgroup 
consisted of 47% women with an average age of 56.7 years (s.d. 17.4) and 53% 
men with an average age of 56.1 years (s.d. 17.9). Although these observations 
were consistent with the epidemiology of osteoporosis, the differences in 
demographic characteristics could introduce biases with unintended results. 
Training a classifier on this dataset might, for example, result in an algorithm that 
distinguishes between the spines of old women and younger men. Subsequently, a 
more demographically balanced subset of CT studies was derived including 1,673 
CT studies, of which 849 were VCF− and 824 VCF+. The VCF− and VCF+ groups 
were age- and sex-matched. The data were split into training (85%) and test (15%) 
groups. All algorithmic training and hyperparameter tuning was performed on the 
training set; the held-out portion was reserved for testing.

From the axial series of an abdominal or chest CT scan, the vertebral column 
center line was localized on a secondarily reconstructed coronal maximum 
intensity projection. A single two-dimensional image was generated by tracking 
the midline in the volume along the sagittal plane, thereby correcting for any 
right/left scoliosis and rendering a virtual sagittal image. This was performed to 
obtain consistent sagittal views of CT examinations, most of which did not contain 
primary multiplanar reconstructions. Connected component analysis, thresholding 
and morphological operations were used to detect the posterior border of the 
vertebral column on the sagittal view and extract fixed size (32 × 32) craniocaudal 
patches.

To classify a sequence of patches corresponding to a single CT series, first a 
patch-based binary classification convolutional neural network (CNN) was trained 
using the architecture described in greater detail elsewhere42. Then, the series of 
patches was fed into the patch-based classifier, resulting in a series of probabilities 
assigned by the model. The probabilities were then fed into a long short-term 
memory layer with 128 cells, followed by a single fully connected layer to aggregate 
the results into a single CT-series level result, trained via the cross-entropy loss.

Generation of the simulated DXA T-score and lumbar trabecular density bone 
imaging biomarkers. As described in detail elsewhere43, the DXA simulation 
training and validation by Zebra Medical Vision utilized 1,843 pairs of CT and 
DXA scans obtained from the same individual at a 6-month interval. All imaging 
was performed as part of clinical practice between 2010 and 2014 within Clalit 
Health Services. The study population consisted of 70.8% women and 29.2% men 
between 50 and 80 years of age. An additional 610 CT abdomen/pelvis studies were 
used to achieve multiclass L1–L4 vertebral segmentation.

Spinal segmentation was derived from primary axial reconstructions, in the 
manner described earlier. To achieve lumbar multiclass segmentation, a cascade 
of two U-Nets47 was used. Binary segmentation of the vertebral column was 
performed using the aforementioned virtual sagittal reconstruction. Multiclass 
segmentation was then performed on the basis of coregistration of each vertebral 
body from the virtual sagittal and coronal maximum intensity projection 
reconstructions, allowing reference of the vertebral body in relation to the ribs, 
with the first lumbar vertebral body designated as the one caudal to the last rib-
bearing vertebra. This allowed for consistent identification of L1 through L4 
even in the presence of lumbar variations, including four or six non-rib-bearing 
vertebrae. Unlike patch-based segmentation, fully CNNs add upsampling layers 
to standard CNNs, allowing better recovery of spatial resolution. To compensate 
for the resolution loss induced by pooling layers, fully CNNs introduce skip 
connections between their downsampling and upsampling paths.

L1–L4 trabecular attenuation values were obtained from a two-dimensional 
area one-third of the distance between vertebral cortices at the sagittal midline. 
To identify optimal pixel range intensity for T-score simulation, linear regression 
was used as detailed previously43. X-ray anteroposterior acquisition was simulated, 
excluding pixels outside the learned intensity range, to provide a summation map.  
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Then, the DXA information was used to evaluate the learned T-score regression 
results for each L1–L4 vertebra. Contrast and noncontrast examinations were  
treated in the same manner since it was previously demonstrated that 
administration of intravenous contrast has less effect on the attenuation of the 
trabecular bone in the lumbar spine26,48, especially in a population of individuals 
over the age of 40 years34.

Calculation of fracture prediction scores. As described in detail previously30, we 
used the FRAXnb ten-year probability charts calibrated for Israel (https://www.
sheffield.ac.uk/FRAX/), which were converted to five-year probabilities. The 
justification for this transformation has been described previously30. The FRAX 
module used was the one that does not include BMD input.

To train the CT-based and FRAXnb-CT-based predictors, the study population 
was randomly divided into training and test datasets (50:50 ratio). Both models 
were developed on the training dataset using logistic regression. The process was 
repeated separately in the ten imputed training datasets; the coefficients were then 
averaged to create a final model. A 95% confidence interval (CI) for the coefficients 
was estimated by applying Rubin’s rule27,49.

The CT-based prediction tool was developed using the input of the three 
bone imaging biomarkers, along with the age and sex variables. The FRAXnb-CT 
prediction tool was developed using the same inputs as the CT-based prediction 
tool, in addition to a single variable that represents the FRAXnb linear prediction 
component (the βTX component in which β represents the coefficients and X 
represents the input variables; this component is calculated by transforming the 
FRAXnb predicted probability into logits27).

Evaluating fracture model performance. The evaluation of all performance 
measures was done only on the test dataset, which was imputed separately. The 
overall discriminative ability of each prediction tool was evaluated using the AUC. 
Additional discriminatory measures, including sensitivity, specificity, PPV and 
NPV were also evaluated. Since these measures are cutoff-specific, whereas the 
models are not all calibrated equally, the comparison between models was based on 
the same percentile of the study population that would be considered high risk. To 
choose an appropriate percentile, the best-calibrated model was used to evaluate 
the percentage of the population that would be considered high risk based on the 
National Osteoporosis Foundation guidelines, that is, 20 and 3% risk for major 
osteoporotic fractures and hip fractures in 10 years, respectively13 (translated to 10 
and 1.5% risk in a 5-year follow-up period).

In addition, to further characterize the discriminatory performance of the 
major osteoporotic fracture prediction tools (FRAXnb, CT and FRAXnb-CT), we 
performed a sensitivity analysis of their ability to separately predict each of the four 
outcomes that compose the major osteoporotic fracture outcome—hip, vertebral, 
proximal humerus or distal radius fractures.

Each tool’s calibration was evaluated by comparing the average predicted risk 
with the observed percentage of major osteoporotic fractures and hip fractures 
during the follow-up period, stratified by deciles of predicted risk. Additionally, 
several measures that evaluated the overall calibration were calculated: the Hosmer–
Lemeshow goodness-of-fit test; calibration slope; and calibration-in-the-large27,50.

All performance measures were calculated separately on each of the imputed 
datasets and averaged to create the final performance measures. A 95% CI for 
tool-specific performance measures, as well as for the differences between tools, 
was calculated using Rubin’s rules for variance estimation in multiple imputed 
datasets27,49. This was done by taking into account both the variance of 500 
bootstrap samples randomly drawn with replacement within each imputed dataset 
and the variance of the 10 averaged performance measures between the imputed 
datasets. The 95% CI for the evaluation of the difference between tools was used 
to compare the CT-based and FRAXnb-CT tools to the FRAXnb tool, which 
represented the baseline performance. A 95% CI that did not include zero was used 
to represent a significant difference (that is, superiority), while a 95% CI indicating 
that the measure was no more than 1% less than the baseline performance (that is, 
noninferiority margin51) was considered to represent noninferiority.

Receiver operating characteristic curves and smoothed calibration plots were 
created using the first imputed dataset. Analyses were conducted using R v.3.5.2 
(MICE v.3.3.045, ROCR v.1.0-752 and rms v.5.1-250 packages).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The study protocol can be shared upon request. Access to the data used for this 
study can be made available upon request, subject to an internal review by N.D. and 
R.D.B. to ensure that participant privacy is protected, and subject to completion 
of a data sharing agreement, approval from the institutional review board of Clalit 
Health Services and institutional guidelines and in accordance with the current 
data sharing guidelines of Clalit Health Services and Israeli law. Pending the 
aforementioned approvals, data sharing will be made in a secure setting, on a per-
case-specific manner from the chief information security officer of Clalit Health 
Services. Please submit such requests to N.D. (noada@clalit.org.il).

code availability
Requests for the statistical code will be considered by the authors according to the 
stated need and dependent on specific approval by the information security office 
of Clalit Health Services.
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Study description This is a retrospective cohort analysis, based on existing medical records. Methods are strictly quantitative. 

Research sample The population of the study is the entire patient population of a large health fund operating in Israel matching the inclusion criteria of the 
baseline model used in the paper (FRAX). Accordingly, patients aged 50-90 years (as of the index date of July 1, 2012.) of both sexes were 
included, who had an available abdomen or chest CT scan as of the index date.

Sampling strategy Due to the retrospective nature of this study all qualified members were included and no sample-size calculation was done. The final 
study population is the largest that has been studied to date to predict fracture risk based on CT scans, and was large enough to provide 
statistical significance.

Data collection All data used in this study is based on existing electronic medical records and CT scans prior to an index date. No dedicated data 
collection was performed.   

Timing All data available as of an index of July 1, 2012 was used to create prediction scores. Data regarding the outcome was collected during a 
follow-up period of 5 years (until June 2017).

Data exclusions As detailed in figure 1, study participants were included due to the following reasons: lack of continuous membership in the health fund, 
no available CT prior to the index date, CT used in the train set of the original algorithm development. 

Non-participation Participants that did not have continuous membership during the follow-up period were also excluded (a total of 20,220 which consist of 
1.8% of the study candidates).

Randomization This is an observational study, no randomization was performed.
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Population characteristics The study population consisted of Clalit members aged 50-90 years (females and males) as of the index-date (July 1, 2012), with 
two years of continuous Clalit membership before the index-date and through the 5-year follow-up period or until death. In 
addition, all members were required to have an available abdomen or chest CT scan prior to the index-date.

Recruitment Participants were not recruited but rather selected from a retrospective Clalit medical database. Due to the requirement to have 
an available abdomen or chest CT prior to the index date this is a selected population that does not represent the entire 50-90 
year olds population. However, since CT-based fracture risk evaluation is only intended to be used on individuals undergoing CT 
scans, the difference between this population and the general baseline population does not affect the external validity of the 
presented results.
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