

Geriatric Comanagement

Of Older Patients with Cancer, MSKCC Experience

Armin Shahrokni, MD, MPH shahroka@mskcc.org
Oct 2021

Disclosure

• I have nothing to disclose.

Edit profile

Armin Shahrokni

@MSK_GeriOnc

Geriatrician & Oncologist. Seeking answer to just 1 question; Do We and How Much We Value Our Aging Population? Ops R Mine Only.

New York, USA & mskcc.org/cancer-care/do...

Joined May 2016

About Me

- Joined MSKCC in 2013 after completing a geriatric oncology fellowship at UCLA.
- Have both oncology and geriatric clinics.
- Attend both disease management team and geriatrics service meetings.
- In the geriatric clinic, mainly perform preoperative evaluation on patients aged 75+.
- Currently our Geriatric Service has 5MDs, 3NPs, 4RNs, pharmacist, social worker, nutritionist.

Outline

- ✓ My MSKCC Problem
- ✓ My (our) 7-year Journey to Solve the Problem

Fascination with Age

Age and Adjuvant Chemotherapy Use After Surgery for Stage III Colon Cancer

Impact of age on postoperative outcomes in 1118 gastric cancer patients undergoing surgical treatment

Effects of Age and Nutritional Status on Surgical Outcomes in Head and Neck Cancer

The effect of age on clinical/pathologic features, surgical morbidity, and outcome in patients with endometrial cancer

The American Journal of Surgery

The American Journal of Surgery 191 (2006) 216–224 Scientific papers–International

Comparison of surgical outcomes of gastric cancer in elderly and middle-aged patients

Limitations of focusing on just AGE

EDITORIAL - COLORECTAL CANCER

The Age of Talking About Age Alone is Over

Armin Shahrokni, MD, MPH and Koshy Alexander, MD

Geriatric Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

In conclusion, over the past decades we have made significant advances in understanding the risk factors associated with poor surgical outcomes. We have realized that some older cancer patients are at higher risk for poor surgical outcomes compared with others of the same age. The data are clear that fitness of an older cancer patient, rather than age per se, should be the factor considered. Data

Differentiating between these Octogenarians

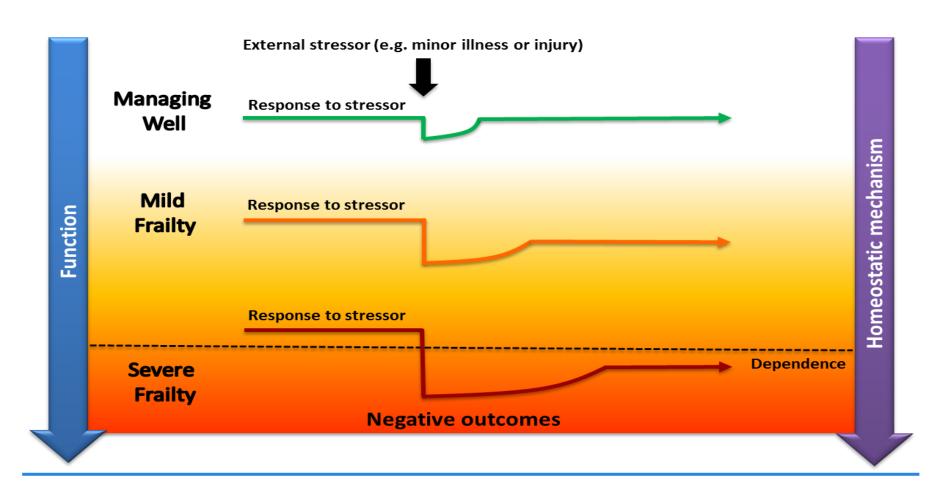
The Gray Zone

A Very Simple Formula

Negative Cancer/Tx Outcome Frail Body Stress of X

Where X could be

Cancer


Cancer surgery

Other cancer treatment

Or other stressors

The Concept of Frailty

When frailty differs among patients, same level of stress produces different outcomes.

Our MSKCC Problem

- Geriatric Assessment was mainly performed on paper and the data was mostly wasted.
- We were <u>UNABLE TO</u>
 - compare one patient's fitness with the other patient easily
 - retrieve or collect the data easily.
 - > communicate with other colleagues in a data-driven environment.
 - explain/show the importance of our work.
- Every medical personnel had its own interpretation of frailty, making it very difficult to understand what they mean by frailty.

Solution: Electronic Rapid Fitness Assessment

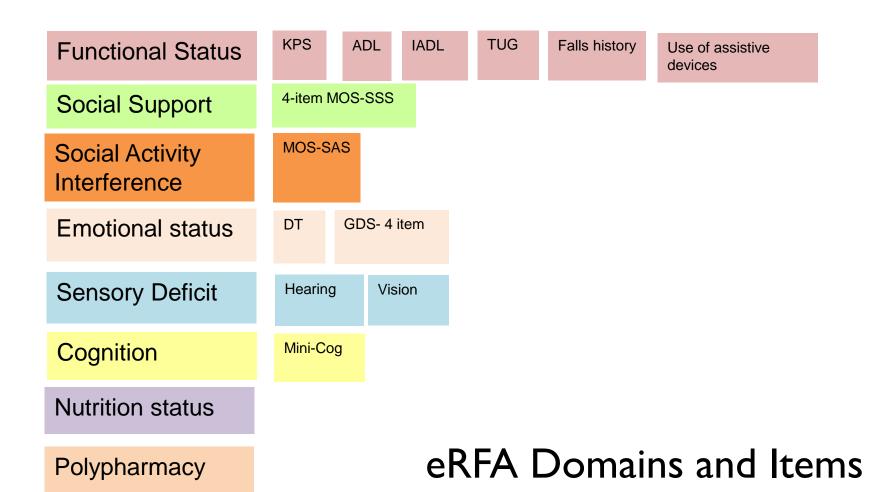
A web-based Geriatric Assessment

Missions

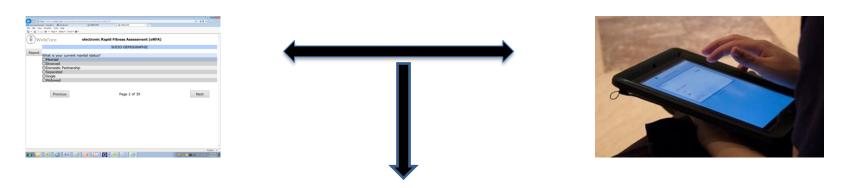
To allow physicians to have a more comprehensive overview of fitness of older patients with cancer

To be patient-centered.

To have the capability of capturing data in a way that is useful for practice and valuable for research at the same time.


To be supportive of patient care and not disruptive.

Electronic Rapid Fitness Assessment


Validated questionnaires for each geriatric assessment domain

Patients/caregivers able to complete the eRFA

- At home (if they have email access)
- In the clinic waiting area using a tablet or laptop
- In the exam room using a desktop

How is eRFA administered?

Geriatric RNs perform the Mini-Cog and the Timed Get Up & Go test and enter the result

into eRFA

Final report

Database For future analysis

eRFA Final Report: Quantifying Frailty

IMPAIRMENT SUMMARY

Global recommendation: If 3 or more impairments are listed in the summary below, consider referral to geriatrics.

*"% Below Threshold" refers to the proportion of patients who score below the threshold value.

	Patient Score	Impairment Threshold	% Below Threshold	Recommendations
KPS	60	<= 80	37%	Read more 🗸
ADL	13	< 14	52%	Read more 🗸
iADL	12	< 16	45%	Read more 😺
History of Falls	In the last 6 months	At least once	25%	Read more 😺
Timed Up and Go (TUG) Test	10 - 19 seconds	>= 10 seconds	36%	Read more ^

Pre/Postop Recommendation:

- A- Consider consultation with physical therapy and occupational therapists.
- B- Encourage use of appropriate assistive devices.
- C- Encourage resistance exercises such as repeated chair stand in the preoperative period.
- D- Consider use of stationary bike or bike pedals in the preoperative period.

Social Support	8	<= 16	43%	Read more 🗸
Limited Social Activity	9	>= 8	50%	Read more 🗸
Distress Level	8	>= 4	55%	Read more 🗸
Depression	3	>= 1	55%	Read more 🗸
Number of Medications	> 10	>= 5	45%	Read more 😺

eRFA: Feasible

172

Original Research

Electronic Rapid Fitness Assessment: A Novel Tool for Preoperative Evaluation of the Geriatric Oncology Patient

Armin Shahrokni, MD, MPH^a; Amy Tin, MA^b; Robert J. Downey, MD^c; Vivian Strong, MD^d; Sanam Mahmoudzadeh, MD^a; Manpreet K. Boparai, MS^b; Sincere McMillan, ANP^a; Andrew Vickers, PhD^b; and Beatriz Korc-Grodzicki, MD, PhD^a

Abstract

Background: The American College of Surgeons and American Geriatrics Society recommend performing a geriatric assessment (GA) in the preoperative evaluation of older patients. To address this, we developed an electronic GA, the Electronic Rapid Fitness Assessment (eRFA). We reviewed the feasibility and clinical utility of the eRFA in the preoperative evaluation of geriatric patients. Methods: We performed a retrospective review of our experience using the eRFA in the preoperative assessment of geriatric patients. The rate and time to completion of the eRFA were recorded. The first 50 patients who completed the assessment were asked additional questions to assess their satisfaction. Descriptive statistics of patient-reported geriatric-related data were used for analysis. Results: In 2015, 636 older patients with cancer (median age, 80 years) completed the eRFA during preoperative evaluation. The median time to completion was 11 minutes (95% CI, 11–12 minutes). Only 13% of patients needed someone else to complete the assessment for them. Of the first 50 patients, 88% (95% CI, 75%-95%) responded that answering questions using the eRFA was easy. Geriatric syndromes were commonly identified through the performance of the GA: 16% of patients had a positive screening for cognitive impairment, 22% (95% CI, 19%-26%) needed a cane to ambulate, and 26% (95% CI, 23%-30%) had fallen at least once during the previous year. Conclusions: Implementation of the eRFA was feasible. The eRFA identified relevant geriatric syndromes in the preoperative setting that, if addressed, could lead to improved outcomes.

J Natl Compr Canc Netw 2017;15(2):172-179

eRFA Score and Postoperative Mortality

ORIGINAL RESEARCH

Geriatric Assessment, Not ASA Physical Status, Is Associated With 6-Month Postoperative Survival in Patients With Cancer Aged ≥75 Years

Armin Shahrokni, MD, MPH*; Bella Marie Vishnevsky, MDb; Brian Jang, BAc; Saman Sarraf, MDb; Koshy Alexander, MDb; Soo Jung Kim, GNPb; Robert Downey, MDd; Anoushka Afonso, MDb; and Beatriz Korc-Grodzicki, MD, PhDb

JNCCN, 2019

Each additional impairment adds 14% to the risk of dying within 6 months after surgery

Variable	Odds Ratio	95% CI	P Value
ASA PS III*	0.86	0.24-2.99	.81
ASA PS IV*	0.44	0.09-2.10	.30
Age	1.05	0.99-1.11	.08
Number of geriatric deficits	1.14	1.02-1.26	.01
30-day ICU admission	2.77	1.06-7.24	.03
Hospital length of stay	1.03	1.005-1.067	.02
Preoperative albumin level	0.36	0.18-0.72	.004

^{*}Compared with ASA PS II.

Abbreviations: ASA PS, American Society of Anesthesiologists physical status; ICU, intensive care unit.

eRFA and Perioperative Care Process

Is Screening for Psychosocial Risk Factors Associated With Mental Health Care in Older Adults With Cancer Undergoing Surgery?

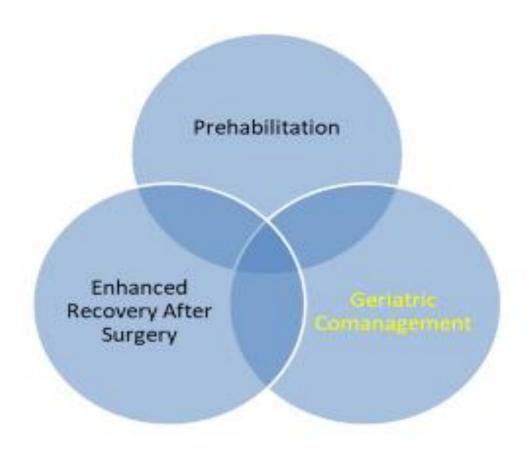
Kelly M. Trevino, PhD ¹; Christian J. Nelson, PhD¹; Rebecca M. Saracino, PhD¹; Beatriz Korc-Grodzicki, MD, PhD²; Saman Sarraf, BS ²; and Armin Shahrokni, MD, MPH²

TABLE 3. Relationship Between Preoperative Geriatric Assessment Variables, Surgical Characteristics and Outcomes, and Postoperative Receipt of Mental Health Care Services

Preoperative Distress: 172%
Poor Social Support: 56%

likelihood of receipt of postoperative mental health care services

	Odds Ratio	95% CI	P
Demographic			
characteristics			
Marital status	0.59	0.35-0.99	.05
Non-Hispanic white	0.82	0.48-1.39	.46
Living with family	1.48	0.85-2.58	.17
Surgical characteristics			
and outcomes			
Hospital length of stay	1.08	1.05-1.11	<.001
ASA	1.46	0.92-2.32	.11
Major adverse events reported	0.78	0.37-1.65	.51
Postoperative ICU admission	1.70	0.82-3.51	.15
Length of surgery	1.00	0.99-1.001	.85
Minor adverse events reported	1.06	0.71-1.58	.78
Geriatric assessment variables			
Elevated distress	1.72	1.16-2.56	.007
Poor social support	1.56	1.07-2.27	.02
Impaired iADL	1.49	0.94-2.36	.09
Comorbid conditions	1.34	0.93-1.95	.12
Impaired ADL	1.47	0.94-2.30	.09
Impaired KPS	0.85	0.54-1.35	.49
Falls within the past y	1.14	0.75-1.72	.55
Impaired TUG	1.05	0.69-1.58	.83
Social activity interference	1.11	0.71-1.73	.64
Weight loss	1.22	0.80-1.86	.35
Elevated depression	1.10	0.73-1.64	.65



Original Investigation | Geriatrics

Association of Geriatric Comanagement and 90-Day Postoperative Mortality Among Patients Aged 75 Years and Older With Cancer

Armin Shahrokni, MD, MPH; Amy L. Tin, MA; Saman Sarraf, MD; Koshy Alexander, MD; Steve Sun, MD; Soo Jung Kim, ANP; Sincere McMillan, GNP; Heidi Yulico, GNP; Farnia Amirnia, MD; Robert J. Downey, MD; Andrew J. Vickers, PhD; Beatriz Korc-Grodzicki, MD, PhD

The Geriatric Comanagement

Preoperative Care

Perform Geriatric Assessment and do the necessary interventions to optimize the status

Educate patients and caregivers

Use of incentive spirometry in the postoperative period
Importance of exercise before surgery
Postoperative delirium and preventive measures
Importance of proper pain management in the perioperative period.

The Geriatric Comanagement

Inpatient Postoperative Care

Implement delirium risk reduction interventions

Assist with the pain management

Reinforce the use of incentive spirometry

Assist with functional recovery

Educate patient and family about the importance of early mobility

Request physical therapy consultation

Assist the surgical team with safe hospital discharge planning

Aims of the Study

Primary aim:

To assess the association between Geriatric Comanagement and 90 day postoperative mortality

Secondary aims:

To assess the association between Geriatric Comanagement and Inpatient Supportive Care Utilization.

Patient Population

- Age 75 or older
- Seen by a surgery service as a new visit from 2015-18.
- Proceeded with surgery within the first two months of that visit.
- Hospital Length of Stay of ≥1 day.

Cohort is divided into Geriatric Comanagement and Surgery cohorts

Table 1. Demographic and Perioperative Characteristics of 1892 Patients

	No. (%)			
Characteristic	Surgical service management (n = 872)	Geriatric comanagement (n = 1020)	P value	
Age, mean (SD) y	80 (4)	81 (4)	<.001	
Men	450 (51.6)	488 (47.8)	.11	
Length of stay, median (IQR), d	4 (2-7)	5 (3-8)	<.001	
Operative time, mean (SD), min	138 (112)	203 (146)	<.001	
ASA score >3ª	818 (93.8)	963 (94.4)	.62b	
Preoperative albumin level, mean (SD) g/dL ^a	3.9 (0.5)	4.0 (0.4)	<.001 ^b	
Estimated blood loss, mean (SD), mL a	138 (309)	200 (298)	<.001b	
MSK-FI score ^a				
0	104 (11.9)	111 (10.9)		
1	227 (26.0)	294 (28.8)		
2	213 (24.4)	278 (27.3)		
3	156 (17.9)	168 (16.5)	— .32 ^b	
4	98 (11.2)	95 (9.3)		
≥5	74 (8.5)	74 (7.3)		
Procedure type ^c				
Colorectal	137 (15.7)	448 (43.9)	<.001	
Gastric and mixed tumor	92 (10.6)	82 (8.0)	.07	
Gynecology	45 (5.2)	264 (25.9)	<.001	
Head and neck	147 (16.9)	314 (30.8)	<.001	
Urology	78 (8.9)	180 (17.6)	<.001	
Plastic	47 (5.4)	118 (11.6)	<.001	
Hepatobiliary-pancreatic	55 (6.3)	183 (17.9)	<.001	
Thoracic	309 (35.4)	150 (14.7)	<.001	
Other procedures	109 (12.5)	159 (15.6)	.06	

eTable 4. Association Between Geriatric Comanagement and 90-day Mortality on Sensitivity Analyses, With Adjustment for Additional Covariates

Model	Odds Ratio (95% CI)	P
Additionally, adjusted for time to surgery (N=1892)	0.47 (0.30-0.73)	0.001
Additionally, adjusted for preoperative hemoglobin level		
(N=1606)	0.49 (0.30-0.80)	0.004
Additionally, adjusted for preoperative sodium level (N=1604)	0.50 (0.31-0.82)	0.006
Additionally, adjusted for preoperative calcium level (N=1602)	0.49 (0.30-0.80)	0.004
Additionally, adjusted for preoperative hemoglobin,		
preoperative sodium, and preoperative calcium levels (N=1600)	0.49 (0.30-0.80)	0.005
Additionally, adjusted for heart disease and arthritis or		
degenerative joint disease (N=1892)	0.47 (0.30-0.74)	0.001
Additionally, adjusted for procedure type (N=1892)	0.57 (0.36-0.90)	0.015
Additionally, adjusted for procedure type and time to surgery		
(N=1892)	0.58 (0.36-0.91)	0.018
Additionally, adjusted for procedure type, time to surgery, heart		
disease, and arthritis or degenerative joint disease (N=1892)	0.58 (0.37-0.92)	0.021

All analyses are adjusted for age at surgery, sex, American Society of Anesthesiologists score, operative time, preoperative albumin level, estimated blood loss, and Memorial Sloan Kettering Frailty Index score.

Table 2. Use of Inpatient Supportive Care Services for 1892 Patients

	No. (%)		_
Service	Surgical service management (n = 872)	Geriatric comanagement (n = 1020)	P value*
Physical therapy	555 (63.6)	820 (80.4)	<.001
Occupational therapy	220 (25.2)	385 (37.7)	<.001
Speech and swallow rehabilitation	42 (4.8)	86 (8.4)	.002
Psychiatry	41 (4.7)	55 (5.4)	.53
Nutrition	637 (73.1)	803 (78.7)	.004
Social work	166 (19.0)	208 (20.4)	.49
Case management	623 (71.4)	768 (75.3)	.06

Table 3. Discharge Locations Among 1855 Patients Who Survived to Hospital Discharge

	No. (%)		
Discharge location	Surgical service management (n = 846)	Geriatric comanagement (n = 1009)	P value ^a
Home	676 (79.9)	731 (72.4)	
Home with home supportive services	115 (13.6)	182 (18.0)	
Hospice or home with hospice	8 (0.9)	2 (0.2)	<.001
Rehabilitation facility	44 (5.2)	89 (8.8)	
Transfer to another hospital	3 (0.4)	5 (0.5)	

Conclusion

- Every Cancer Center is facing or will face the Memorial Problem; *The Ever-Growing Problem of Frailty*.
- > The solution would be a mixture of data, geriatric expertise, and multidisciplinary collaboration.
- It requires adequate human resource, constant education and training to promote the value of geriatric oncology, collecting data, presenting the data in various local and non-local venues, and building teams and partnering with other services.

Thanks to the Members of the Team

